Маркеры и рецепторы иммунокомпетентных клеток. Кластеры дифференцировки (cd-антигены) лейкоцитов Cd маркеры иммунология

Экспрессируют особые у каждой субпопуляции поверхностные молекулы, которые могут служить маркерами (метками). Значительная часть этих маркеров легко идентифицируется с помощью моноклональных антител . Разработана систематизированная номенклатура маркерных молекул; в ней группы моноклональных антител, каждая их которых специфических связывается с определенной маркерной молекулой, обозначены символом (Claster Designation). За основу CD-номенклатуры принята специфичность прежде всего мышиных моноклональных антител к лейкоцитарным антигенам человека. В создании этой классификации участвуют многие специализированные лаборатории. Моноклональные антитела совпадающей специфичности связывания объединяют в одну группу, присваивая ей номер в системе CD. Однако в настоящее время принято таким образом обозначать не группы антител, а маркерные молекулы, распознаваемые антителами.

Компоненты клеточной поверхности относятся к различным семействам, гены которых произошли, вероятно, от нескольких предковых. Основными из этих семейств являются:

Сеперсемейство рецепторов для фактора некроза опухолей (ФНО) ;

Суперсемейство лектинов C-типа, например, CD23 ;

Суперсемейство многодоменных трансмембранных рецепторных белков (например, рецептор ИЛ-6).

Поскольку набор антигенов клеточной поверхности лимфоцитов зависит не только от типа и стадии дифференцировки клеток, но и от их функционального состояния, с помощью моноклоналнальных антител можно не только различить разные лимфоциты, но и отличить покоящиеся клетки от активированных. Антигены клеточной поверхности, выявляемые с помощью моноклональных антител, принято называть кластерами дифференцировки. Кластер моноклональных антител , реагируя со специфическими полипептидами на поверхности B- и T-лимфоцитов, макрофагов , нейтрофилов и , выявляют их поверхностные маркеры, называемые CD (Claster Determinant). К началу 90-х годов число CD-специфичностей лейкоцитов приближалось к 80(!). Наиболее существенные маркеры T-лимфоцитов - это CD2 ( T11), CD3 ( T3), CD4 ( T4), CD5 ( T1) и CD8 ( T8).

Антигены CD имеют белковую природу и играют важную роль в иммунном ответе. Дифференцировочным антигенам по номенклатуре Всемирной организации здравоохранения (ВОЗ) дается название плюс порядковый номер. Аббревитатура CD, расшифровывываемая как кластер дифференцировки, обозначает группу антител, распознающих одну и ту же или близкие антигенные детерминанты, но может использоваться и для обозначения самого антигена - молекулы, распознаваемой соответствующей группой антител.

Необходимо отметить, что ряд поверхностных молекул

На мембране обнаруживаются групповые АГ, объединяющие сходные по морфофункциям клетки – АГ кластеров дифференцировки клетки (CD-АГ).

  1. CD 4 – T- х

  2. CD 11a – моноциты, гранулоциты;

  3. CD 19-22 – В-л

Антигенраспознающие рецепторы.

Сущность дифференцировки каждого лимфоцита – экспрессия АГ-распознающего рецептора и необходимых дополнительных сервисных молекул, чтобы факт распознавания АГ имел действенные последствия, направленные на санацию организма от мешающих АГ.

Эти сервисные молекулы обеспечивают взаимодействие иммунных клеток.

Антигенраспознающие рецепторы:

Это аналоги ¼ молекулы Ig, одного Fab – фрагмента. Имеется две цепи в рецепторе: α и β – Тαβ; γ и δ – Тγδ.

TCR – не распознает растворимые АГ . Что же тогда распознают Т-л?

Природой они предназначены для распознавания поверхностных структур «собственных клеток». Если что-то на поверхности своих клеток будет «раздражать» Т-л, то они постараются организовать уничтожение.

Клеточные популяции иммунной системы

Специфическую функцию иммунной за­щиты непосредственно осуществляет много­численный пул клеток миелоидного и лимфоидного ростков крови: лимфоциты, фагоциты и дендритные клетки. Это основные клетки иммунной системы . Кроме них в иммунный ответ может вовлекаться множество других клеточных популяций (эпителий, эндотелий, фибробласты и др.).

Перечисленные клетки различаются не только морфологически, но и по своей функциональной направленности, по маркерам (специфические молекулярные метки), по рецепторному аппарату и продук­там биосинтеза. Тем не менее большую часть клеток иммунной системы объединяет близ­ кое генетическое родство - они имеют обще­го предшественника, полипотентную стволо­вую клетку костного мозга.

На поверхности цитоплазматической мем­браны клеток иммунной системы существуют особые молекулы, которые служат их мар­керами. С помощью специфических антител против этих молекул удалось разделить клет­ки на отдельные субпопуляции. В 1980-х годах была принята международная номенклатура мембранных маркеров лейкоцитов человека . Они получили название CD -антигены (аббр. от англ. Cluster of Differentiation , или Definition ). В настоящее время важнейшие субпопуляции клеток иммунной системы идентифицируют серологически при помощи моноклональных антител или в генетическом анализе.

По функциональной активности клетки-участники иммунного ответа подразделяют на:

    регуляторные (индукторные),

    эффекторные

Регуляторные клетки управляют функционированием компонентов иммунной системы путем выработки медиаторов - иммуноцитокинов и лигандов. Эти клетки оп­ределяют направление развития иммунного реагирования, его интенсивность и продол­жительность.

Эффекторы являются непос­редственными исполнителями иммунной защиты. Они воздействуют на объект ли­бо непосредственно, либо путем биосинтеза биологически активных веществ со специ­фическим эффектом (антитела, токсические субстанции, медиаторы и пр.).

АПК выполняют несложную, но очень от­ветственную задачу. Они захватывают, процессируют (перерабатывают путем ограни­ченного протеолиза) и представляют антиген иммунокомпетентным клеткам (Т-хелперам) в составе комплекса с МНС II класса . АПК лишены специфичности в отношении самого антигена. За счет спонтанной сорбции моле­кула МНС II класса может включать в себя любые эндоцитированные олигопептиды, как свои собственные, так и чужие. Установлено, что большая часть комплексов МНС II класса содержит аутогенные молекулы и лишь малая доля - чужеродный материал.

Наличие на мембране МНС 11 класса яв­ ляется обязательным, но не единственным признаком АПК. Для осуществления про­ фессиональной деятельности необходима экспрессия ко-стимулируюших факторов (CD 40, 80, 86), а также множества молекул адгезии.

Последние обеспечивают тесный, про­странственно стабильный и продолжитель­ный контакт АПК с Т-хелпером. Помимо МНС II класса АПК экспрессируют молекулы CD 1. С их помощью клетки могут презентаровать липосодержащие или полисахаридные антигены.

Наиболее типичными АПК, относящимися к разряду «профессиональных», являются (по активности) дендритные клетки костномоз­гового происхождения, В-лимфоциты и мак­рофаги . Дендритные клетки почти в 100 раз эффективнее макрофагов. Функцию «непро­фессиональных» АПК могут также выполнять некоторые другие клетки в состоянии актива­ции - это, в первую очередь, эпителиальные и эндотелиоциты.

Осуществление целенаправленной функ­ции по иммунной защите макроорганизма возможно благодаря наличию на клетках им­мунной системы специфических антигенных рецепторов (иммунорецепторов ).

По меха­ низму рецепции они подразделяются на:

  1. непрямые.

Прямые иммунорецепторы непосредственно связываются с молекулой антигена. Так функционируют антигенспецифические рецепторы большинства субпопу­ляций лимфоцитов.

Непрямые иммунорецеп­ торы взаимодействуют с молекулой антигена опосредованно - через Fc-фрагмент молеку­лы иммуноглобулина. Это так называемый Fc -рецептор (FcR).

Существуют особенности в механизме ре­цепции в зависимости от аффинности FcR . Высокоаффинный рецептор может связываться с интактными молекулами IgE или IgG4 и обра­зовывать рецепторный комплекс, в котором антигенспецифическую ко-рецепторную функцию выполняет молекула иммуноглобулина. Такой рецептор есть у базофилов и тучных клеток. Низкоаффинный FcR «распознает» молекулы иммуноглобулина, уже образовавшие иммунные комплексы. Это самый распространенный тип FcR, который обнаруживается на макро­фагах, естественных киллерах, эпителиальных, дендритных и множестве других клеток.

Иммунное реагирование основано на тес­ ном взаимодействии различных клеточных популяций. Это достигается при помощи био­синтеза клетками иммунной системы широко­го спектра иммуноцитокинов . Подавляющее большинство клеток иммунной системы пос­тоянно перемещается во внутренних средах организма, широко используя возможности лимфатической и кровеносной систем, а так­же свои функциональные возможности.

Состарившиеся, выработавшие свой биологический ресурс, лож­но активированные, зараженные и генетичес­ки трансформированные клетки уничтожаются. Клеточный дефицит восполняется за счет деле­ния стволовых клеток.

Понятием кластер дифференцировки (от англ. cluster of differentiation, cluster designation; CD) обозначают номенклатуру дифференцировочных антигенов человеческих лейкоцитов. Данная классификация была принята с целью исследования и идентификации поверхностного мембранного белка лейкоцитов в 1982 году. CD-антигенами или, другими словами, CD-маркерами являются белки, которые служат лигандами, либо рецепторами, участвуют во взаимодействиях клеток и являются компонентами каскада установленных сигнальных путей. Данные белки способны выполнять и другие функции (в частности, белок клеточной адгезии). Перечень включенных в номенклатуру антигенов кластеров дифференцировки регулярно пополняется и на сегодня составляет свыше 320 CD-антигенов, а также их подтипов.

Рис. 1.

Номенклатура кластеров дифференцировки была разработана на первой конференции (Париж. 1982 г.) по антигенам дифференцировки человеческих лейкоцитов. Назначением созданной системы стало упорядочивание значительного числа моноклональных антител по отношению к поверхностным эпитопам лейкоцитов, выработанных во многих лабораториях мира.

Было решено, что каждый CD-антиген будет приписан к определенному ряду моноклональных антител (при наличии хотя бы двух неодинаковых клонов), способных распознавать определенный эпитоп на клетке. Название CD-антиген распространилось также и на белок-маркер, в реакцию с которым вступают антитела. Характерно, что описанная номенклатура производит классификацию кластеров дифференцировки, не касаясь клеточных функций белка. Нумерация ведется от антигенов описанных раньше к описанным позже в порядке хронологии.

Со временем данную классификацию значительно расширили, включив в нее и другие разновидности клеток помимо лейкоцитов. Было установлено, что многие из CD-антигенов относятся не к поверхностным, а к внутриклеточным белкам-маркёрам. Некоторые из CD-антигенов были отнесены не к белкам, а к поверхностным углеводам.

Кластеры дифференцировки являют собой моноклональные группы антител способные выявлять присутствие одноименных молекул на поверхностях клеток. Каждую молекулу мембраны принято обозначать как CD, ей присваивается соответствующий номер. Некоторые CD обозначаются символом "w" (от workshop - рабочая группа, англ), свидетельствующим, что данный антиген охарактеризован не полностью.

Возможность идентификации кластеров дифференцировки появилась только с началом полномасштабного использования в опытах моноклональных антител - мАт, которые применяются в технологии проточной цитометрии. Исходя из того, что основная задача в исследованиях экспрессии антигена - обнаружение позитивных клеток различного происхождения, считается, что сходные картины мечения, которые показывают мАт, свидетельствуют о мечении ими одного и того же антигена.

Подобные исследования были начаты в 1980 году. Результатом их стало введение общей CD-номенклатуры не только для человеческих антигенов, но и для антигенов гомологичного характера различных видов животных. Вне сомнения, важнейшим и одним из первых следствий введения CD-номенклатуры явилась возможность обнаружения уникального ряда антигенов с последующим их изучением, клонированием, исследованием условий функциональных вариантов, экспрессии и т.д.

Появилась возможность как фундаментального использования CD-номенклатуры, так и направленного влияния на реализацию некоторых функций изучаемой клетки посредством применения мАт к определенному CD-антигену. Например, то, что CD4 является маркером (преимущественно) для Т-хелперов позволило показать значение данного маркера в процессе отмены смешанных лимфоцитарных реакций и блокады некоторых заболеваний аутоиммунного характера in vivo, используя aHTH-CD4 мАт. Другой пример: анти-СШ мАт успешно активирует Т-клетки.

Как видим, возможность определить экспрессию кластера дифференцировки антигенов для различных состояний определенных клеточных типов позволила установить причины подавляющих и активирующих воздействий, что открывает перспективы моделирования нужных состояний in vivo.

Маркеры и рецепторы являются анализаторами внешней среды, их может быть 100 – 10000 и более на поверхности клетки, они необходимы для контактов «клетка – молекула - клетка» и бывают АГ – специфическими, АГ – неспецифическими, для цитокинов, для гормонов и др. Мембранные маркеры (антигены) делятся на дифференцировочные (СD-AG), HLA, относятся к главному комплексу гистосовместимости, и детерминантные. Молекулы специфического иммунного ответа уникальны для каждого клона и каждого отдельного процесса: антигенраспознающие иммуноглобулиновые рецепторы В – клеток (BCR), антигенраспознающие рецепторы Т – клеток (TCR), антигенпредставляющие молекулы. Данные антигены могут служить для исследователей иммунобиологическими маркерами. Трансплантационный иммунитет обусловлен наличием трансплантационных маркеров -антигенов:

Антигены MHC.

Антигены эритроцитов системы АВ0 и Rh.

Малый комплекс антигенов гистосовместимости, кодируемый Y - хромосомой.

Лейкоциты имеют на своей поверхности большое количество рецепторов и антигенов, которые имеют важное значение, поскольку с их помощью можно идентифицировать клетки разных субпопуляций. Рецепторы и антигены находятся в подвижном, «плавающем» положении, причем достаточно быстро сбрасываются. Подвижность рецепторов дает возможность концентрироваться им на одном участке мембраны, что способствует усилению контактов клеток между собой, а быстрое сбрасывание рецепторов и антигенов подразумевает их постоянное новообразование в клетке.

Дифференцировочные антигены Т-лимфоцитов.

Для клинической практики большое значение имеет определение разных маркеров лимфоцитов. Основная концепция дифференцировки лейкоцитов основана на существовании специфических мембранных рецепторов.

Так как такие рецепторные молекулы могут выступать в роли антигенов, существует возможность их выявления с помощью специфических антител, которые реагируют лишь с одним антигеном клеточной мембраны. В настоящее время существует огромное количество видов моноклональных антител к дифференцировочным антигенам лейкоцитов человека.

В связи с их важностью и для улучшения диагностики необходимы стандартизация специфичностей дифференцировочных антигенов.

В 1986 году предложена номенклатура дифференцировочных антигенов лейкоцитов человека. Это СД-номенклатура (cluster of differentiation – кластер дифференцировки). Она базируется на способности моноклональных антител реагировать с определенными дифференцировочными антигенами. СД-группы нумеруются.

На сегодняшний день имеются моноклональные антитела к целому ряду дифференцировочных антигенов Т-лимфоцитов человека.

При определении общей популяции Т-клеток используются моноклональные антитела специфичности СД2, 3, 5, 6 и 7.

СД2. моноклональные антитела специфичности СД2 направлены против антигена, который идентичен “рецептору эритроцитов барана”. Способность Т-лимфоцитов образовывать розетки с эритроцитами брана обеспечивает простую и надежную идентификацию этих клеток. СД2 обнаруживается на всех зрелых периферических Т-лимфоцитах, на большинстве тромбоцитов, а также на определенных популяциях клеток – О-лимфоцитов (ни Т- ни В-лимфоциты).

СД3. моноклональные антитела этого класса реагируют с тримолекулярным белковым комплексом, который ассоциирован с антигенспецифическим рецептором Т-клетки, являющийся основным функциональным маркером этой популяции. СД3 используется для идентификации зрелых Т-клеток.

СД5 . антиген представляет собой гликопротеин, выявляемый на всех зрелых Т-клетках. Определяется на поздних стадиях дифференцировки клеток в тимусе. Часто маркер выявляется на клетках больных с В-клеточным типом хронического лимфолейкоза.

СД6. антитела специфичности СД6 реагируют с высокомолекулярным гликопротеином, присутствующим на мембране всех зрелых Т-клеток. Антиген выявляется также на небольшой части периферических В-клеток и присутствует у большинства лейкозных клеток В-клеточного типа хронического лимфолейкоза.

СД7. выявляется у 85 % зрелых Т-клеток. Присутствует также и на тимоцитах. Он считается наиболее надежным критерием диагностики острых Т-клеточных лейкозов.

Помимо этих основных Т-клеточных маркеров известны и другие дифференцировочные антигены Т-клеток, которые характерны либо для определенных стадий онтогенеза, либо для различающихся по функциям субпопуляций. Среди них наиболее широко распространены СД4 и СД8.

СД4 . зрелые СД4 + Т-клетки включают Т-лимфоциты, обладающие хелперной активностью и индукторы. Особое значение имеет то, что СД4 связывается с вирусом СПИДа, что приводит к проникновению вируса внутрь клеток этой субпопуляции.

СД8. Субпопуляция СД8+ Т-клеток включает цитотоксические и супрессорные Т-лимфоциты.

Маркеры и рецепторы иммунокомпетентных клеток.

Рецепторы лимфоцитов.

На поверхности В-лимфоцита имеется ряд рецепторов.

1) Антигенспецифические рецепторы или Ig-ны клеточной поверхности (sIg). Они представлены в основном IgM и IgD в форме мономеров.

Связывание антигена с антигенспецифическими рецепторами В-клеток вызывает дифференцировку В-лимфоцитов, что приводит к образованию антителпродуцирующих клеток и В-лимфоцитов иммунологической памяти.

2) Рецепторы к факторам роста и дифференцировки. Эта группа рецепторов вызывает деление В-клеток и секрецию ими иммуноглобулинов.

3) Fc-рецепторы - специфически узнающие детерминанты, локализованные в Fc-фрагменте иммуноглобулина и связывающие эти Ig. Fc-рецепторам отводится существенная роль в регуляции иммунного ответа.

4) Рецепторы к комплементу - имеют важное значение при активации В-клеток, при индукции толерантности, усилении клеточной кооперации, облегчает межклеточное взаимодействие.

Т-лимфоцит несет на своей поверхности специфические рецепторы для распознавания антигенов. Рецептор представляет собой гетеродимер, состоящий из полипептидных цепей, каждая из которых содержит вариабельную и константную области. Вариабельный участок связывается с антигенами и молекулами МНС. В костном мозге под влияние микроокружения и происходит дифференцировка стволовой В-клетки в пре-В-лимфоцит. В цитоплазме этой клетки происходит синтез тяжелых цепей IgM, а через ряд делений – и легких цепей иммуноглобулинов. Параллельно этому появляются молекулы иммуноглобулинов и на поверхности клеток. В дальнейшем по мере созревания В-клеток количеств молекул иммуноглобулинов на поверхности клеточной мембраны увеличивается. Наряду с увеличением основных рецепторов (к Fc-фрагментам иммуноглобулинов и С3 компоненту комплемента) появляются IgD, а затем у части клеток происходит переключение на продукцию IgG, IgA или IgE (или одновременно молекул нескольких типов). Цикл дифференцировки В-лимфоцитов в костном мозге составляет 4-5 суток.

Под влиянием антигена и при помощи Т-лимфоцитов и макрофагов зрелая В-клетка, имеющая рецепторы к данному антигену, активируется и превращается в лимфобласт, который делится 4 раза и превращается в юную плазматическую клетку, превращающуюся после ряда делений в зрелую плазматическую клетку, гибнущую после 24-48 часов функционирования.

Параллельно с образованием под влиянием антигена плазматических клеток часть специфических к данному антигену В-лимфоцитов, активируясь, превращается в лимфобласты, далее в большие и малые лимфоциты, сохраняющие специфичность. Это клетки иммунологической памяти – долгоживущие лимфоциты, которые, рециркулируя в кровотоке, заселяют все периферические лимфоидные органы. Эти клетки способны более быстро активироваться антигеном данной специфичности, что определяет большую скорость вторичного иммунного ответа.

Зрелый В-лимфоцит имеет определенный набор рецепторов на своей поверхности, благодаря которым он взаимодействует с антигеном, другими лимфоидными клетками и различными веществами, стимулирующими активацию и дифференцировку В-клеток. Главными рецепторами клеточной мембраны В-лимфоцита являются иммуноглобулиновые детерминанты, с помощью которых клетка соединяется с определенным антигеном и стимулируется. Параллельно этот же антиген стимулирует специфический Т-лимфоцит. Для узнавания В-лимфоцитом активированной Т-клетки служат Ia-антигены (HLA-DR-антигены). Помимо этого, на поверхности В-лимфоцита имеются рецепторы непосредственно для специфических антигенов Т-лимфоцитов, при помощи которых осуществляется специфический контакт Т- и В- клеток. Т-хелперы передают В-лимфоцитам при контакте серию стимулирующих факторов; к каждому из этих факторов на поверхности В-лимфоцита имеется соответствующий рецептор (к фактору роста В-лимфоцитов, интерлейкину-2, фактору дифференцировки В-клеток, антигенспецифическому хелперному фактору и т.д.).

Важнейшим рецептором В- лимфоцита является рецептор к Fc-фрагменту иммуноглобулинов, благодаря которому клетка связывает на своей поверхности молекулы иммуноглобулинов разной специфичности. Это свойство В-клетки определяет ее антителозависимую специфичность, которая появляется только в том случае, если клетка специфически или неспецифически сорбировала на своей поверхности иммуноглобулины. Эффект антителозависимой клеточной цитотоксичности требует наличия комплемента; в соответствии с этим на поверхности В-лимфоцита имеется рецептор к С3 компо­ненту комплемента.

Дифференцировочные антигены Т-лимфоцитов выявляют с помощью метода проточной цитометрии, непрямой иммунофлюоресценции, лимфотоксического теста. Для выполнения этих методов необходимы МАТ к дифференцировочным антигенам Т-лимфоцитов. С помощью поверхностных антигенных маркеров можно определить популяцию и субпопуляцию клеток, стадию их дифференцировки и активации. Наиболее доступный метод иммунофлюоресценции основан на способности моноантител фиксироваться на поверхности жизнеспособных клеток и позволяет выявить специфические антигенные детерминанты: CD3, CD4, CD8 и др. после дополнительной обработки лимфоцитов антииммуноглобулинами, мечеными ФИТЦ. Определение количества В-лимфоцитов. В основе методик лежит тот факт, что на поверхности В-лимфоцитов имеются рецепторы для Fc-фрагмента иммуноглобуллинов, для третьего компонента комплемента (С3), для мышиных эритроцитов и иммуноглобулиновые детерминанты. Наиболее значимыми поверхностными маркерами В-лимфоцитов являются рецепторы CD19, CD20, CD22, определяемые с помощью МАТ методом проточной цитометрии. Определение В-клеток и степени их зрелости важно при первичных гуморальных иммунодефицитах, когда необходимо осуществить дифференциацию между агаммоглобулинемией с В- и без В-клеток. В периферической крови содержатся так называемые нулевые лимфоциты - это клетки, не имеющие признаков Т- и В-лимфоцитов, поскольку лишены антигенных рецепторов, либо с блокированными рецепторами. Вероятно, что незрелые лимфоциты, либо старые клетки, утратившие рецепторы, или клетки, поврежденные токсинами, иммунодепрессантами. 70% людей имеют 8-25% нулевых лимфоцитов. При ряде заболеваний число таких клеток растет либо в случае повреждения клеток, либо за счет выброса незрелых или дефектных клеток. Определение их числа производят, вычитая Т- и В-лимфоциты из общего содержания лимфоцитов.

Использование специфических маркеров в сочетании с электронной микроскопией позволяют надежно идентифицировать и оценить участие мононуклеарных фагоцитов в тех или иных процессах. Одним из наиболее надежных маркеров для идентификации мононуклеарных фагоцитов человека и животных является фермент эстераза, который определяется гистохимически при использовании в качестве субстрата альфа-нафтил-бутирата или альфа-нафтил-ацетата. При этом окрашиваются почти все моноциты и макрофаги, хотя интенсивность гистохимической реакции может варьировать в зависимости от вида и функционального состояния моноцитов, а также от условия культивирования клеток. В мононуклеарных фагоцитах фермент локализуется диффузно, тогда как в Т-лимфоцитах выявляется в виде 1-2 точечных гранул.

Другой надежный маркер-лизоцим-фермент, секретируемый макрофагами, который может быть выявлен с помощью иммунофлуоресцентного метода с использованием антител к лизоциму.

Выявлять различные стадии дифференцировки м.ф. позволяет пероксидаза. Гранулы, содержащие фермент, окрашиваются положительно, только в монобластах, промоноцитах, моноцитах и макрофагах экссудата. Резидентные (т.е. постоянно присутствующие в нормальных тканях) макрофаги не окрашиваются.

В качестве ферментов-маркеров мононуклеарных фагоцитов используются также 5-нуклеотидаза, лейцинаминопептидаза, фосфодиэстераза 1, локализующиеся в плазматической мембране. Активность этих ферментов определяют либо в гомогенатах клеток, либо цитохимически. Выявление 5-нуклеотидазы позволяет отличать нормальные макрофаги от активированных (активность этого фермента высока в первых и низка во вторых). Активность лейцин-аминопептидазы и фосфодиэстеразы, наоборот, возрастает по мере активирования макрофагов.

Компоненты комплемента, в частности С3, также могут являться маркерами, поскольку этот белок синтезируется только моноцитами и макрофагами. Он может быть выявлен в цитоплазме с помощью иммунноцитохимических методов; компоненты комплемента у разных видов животных различаются по антигенным свойствам.

Весьма характерно для м.ф. наличие иммунологических рецепторов для Fc-фрагмента иммуноглобулина G и для компонента С3 комплемента. Мононуклеарные фагоциты несут названные рецепторы на всех стадиях развития, но среди незрелых клеток число м.ф. с рецепторами ниже, чем среди зрелых (моноцитов и макрофагов). М.ф. обладают способностью к эндоцитозу. Поэтому поглощение опсонизированных бактерий или покрытых иммуноглобулинами G эритроцитов (иммунный фагоцитоз) является важным критерием, позволяющим отнести клетку к с.м.ф.. однако поглощение покрытых комплементом эритроцитов не происходит, если м.ф. не были предварительно активированы. Кроме фагоцитоза, все м.ф. характеризуются интенсивным пиноцитозом. В макрофагах преобладает макропиноцитоз, который лежит в основе захвата всех растворов; везикул, образующиеся в результате интернализации мембраны, транспортируют вещества и за пределы клетки. Пиноцитоз отмечен и у других клеток, но в более слабой степени. Нетоксичес4кие витальные красители и коллоидный уголь мало подходят для характеристики эндоцитозной активности м.ф., поскольку поглощаются и другими типами клеток.

Для выявления специфических для м.ф. антигенов могут быть использованы антисыворотки.

На клеточном уровне по способности клеток к делению судят по включению меченного предшественника ДНК 3Н-тимидина или по содержанию ДНК в ядрах. Оценка фагоцитоза периферической крови. Предлагается система комплексного исследования функциональной активности фагоцитирующих клеток периферической крови, позволяющая тестировать параметры, изменение которых может свидетельствовать о нарушении толерантности к инфекции. Начальным этапом взаимодействия фагоцита с антигеном является движение фагоцитов, стимулом для которого служат хемоаттрактанты. Затем наступает этап адгезии, за который отвечают поверхностные рецепторы: селектины и интегрины (CD18, CD11a, CD11b, CD11c, CD62L, CD62E), которые определяются с помощью МАТ методом иммунофлюоресценции.

Поскольку набор антигенов клеточной поверхности лимфоцитов зависит не только от типа и стадии дифференцировки клеток, но и от их функционального состояния, с помощью моноклональных антител можно не только различить разные лимфоциты, но и отличить покоящиеся клетки от активированных. Антигены клеточной поверхности, выявляемые с помощью моноклональных антител, принято называть кластерами дифференцировки. Кластер моноклональных антител, реагируя со специфическими полипептидами на поверхности B- и T-лимфоцитов, макрофагов, нейтрофилов и NK, выявляют их поверхностные маркеры, называемые CD (Claster Determinant).

Гибридомная технология, разработанная Келером и Милштейном в 1975 году, позволила получить большое количество моноклональных антител к поверхностным антигенам лейкоцитов человека. С целью их классификации на международной конференции в Париже в 1982 году была создана единая номенклатура, согласно которой группы антител, обладающих сходными связывающими способностями и распределением в тканях, получили названия кластеров дифференцировки (cluster of differentiation). В дальнейшем, термином CD, стал обозначаться дискретный антиген на мембране клетки, который идентифицируется двумя и более моноклональными антителами. CD номенклатура, представляет собой хронологически выстроенный список, в котором порядковый номер молекулы в основном характеризует время ее идентификации. Отбор и классификация новых кластеров проходит в рамках номенклатурных комитетов ВОЗ и международного союза иммунологических обществ. Регистрация присвоения соответствующих номеров кластерам, происходит на международных рабочих совещаниях по дифференцировочным антигенам человека.

Клетки, несущие антиген

Функции антигена

Маркеры Т-лимфоцитов

Т-лимфоциты коркового вещества тимуса

Связан с b2-микроглобулином, участвует в представлении антигена незрелым Т-лимфоцитам

Т- и NK-лимфоциты

Рецептор к эритроцитам барана,

Т-лимфоциты

Связан с антигенраспознающим рецептором Т-лимфоцитов, участвует в их активации

HLA классаII

Т-лимфоциты, моноциты

Присутствует на Т-хелперах, обеспечивает их взаимодействие с макрофагами

Т- и В-лимфоциты

Присутствует на зрелых Т-лимфоцитах и незначительной части В-лимфоцитов, появляется на лейкозных В-лимфоцитах при хроническом лимфолейкозе

Т-лимфоциты

Присутствует на костномозговых предшественниках Т-лимфоцитов и зрелых Т-лимфоцитах

HLA класса I

Т- и NK-лимфоциты

Присутствует на цитотоксических, Т-лимфоцитах, обеспечивает их взаимодействие с клетками-мишенями

Интерлейкин-2

Т-, В- и NK-лимфоциты, моноциты

Альфа-цепь рецептора к интерлейкину-2 (р55), маркер активированных Т- и В-лимфоцитов

Т-лимфоциты

Участвует в активации Т-лимфоцитов

Фибронектин

Т-лимфоциты

Обеспечивает адгезию к внеклеточному матриксу

Т- и В-лимфоциты

Присутствует на Т-лимфоцитах коркового вещества тимуса, активированных Т-лимфоцитах, незрелых В-лимфоцитах и плазматических клетках, участвует в регуляции функций В-лимфоцитов

Участвует в активации Т-лимфоцитов

Все лейкоциты

Участвует в активации лимфоцитов, внутриклеточная часть рецептора является тирозинкиназой

Все лейкоциты

Маркер девственных лимфоцитов CD4

Т- и В-лимфоциты, гранулоциты, моноциты

Маркер клеток памяти (лимфоцитов CD4)

Трансферрин

Т-лимфоциты, моноциты

Рецептор трансферрина, маркер активированных Т-лимфоцитов

Маркеры В-лимфоцитов

Поверхностные
иммуноглобулины

В-лимфоциты

Присутствуют только на зрелых В-лимфоцитах

В-лимфоциты

Присутствует на незрелых В-лимфоцитах, появляется на лейкозных клетках при остром лимфолейкозе

В-имфоциты

Присутствует на пре-В-лимфоцитах и на всех зрелых В-лимфоцитах, участвует в активации В-лимфоцитов

В-лимфоциты

Присутствует на всех В-лимфоцитах

В-лимфоциты

Рецептор к комплементу и вирусу Эпштейна-Барр

В- и Т-лимфоциты, моноциты,
эозинофилы

Низкоаффинный рецептор к Fc-фрагменту IgE

В-лимфоциты, гранулоциты

Низкоаффинный рецептор к Fc-фраг-менту IgG

В- лимфоциты

Стимулирует пролиферацию В-лимфоцитов, по строению сходен с CD27 и рецептором фактора некроза опухолей

В-лимфоциты

Появляется на костномозговых предшественниках В-лимфоцитов, участвует в их дифференцировке

Антиген, CD4

В- и Т-лимфоциты, моноциты

Антиген HLA класса II, участвует в представлении антигена Т-хелперам и их активации, маркер активированных Т-лимфоцитов

Маркеры моноцитов и макрофагов

Все лейкоциты

Альфа-цепь LFA-1, участвует в межклеточной адгезии

C3bi, фибронектин

Моноциты, гранулоциты, NK-лимфоциты

Альфа-цепь CR3, участвует в межклеточной адгезии

Моноциты, гранулоциты. В- и NК-лимфоциты

Альфа-цепь CR4, участвует в межклеточной адгезии

Все лейкоциты

Бета-цепь рецепторов CD11a/CD18, GD11lb/CD18, CD1lc/CD18, участвует в межклеточной адгезии

Маркеры NК-лимфоцитов

Fc-фрагмент IgG

NK-лимфоциты, моноциты и
гранулоциты

Низкоаффинный рецептор IgG

NK- и Т-лимфоциты

Присутствует на части Т-лимфоцитов, участвует в межклеточной адгезии

NK- и Т-лимфоциты

Присутствует на части лимфоцитов CD8, при некоторых вирусных инфекциях увеличивается число лимфоцитов, несущих одновременно CD8 и CD57

(-) — неизвестен или отсутствует; CR — рецептор к компонентам комплемента; ICAM — молекулы межклеточной адгезии (InterCellular Adhesion Molecule); LFA —лимфоцитарный функциональный антиген (Lymphocyte Function-associated Antigen).

* - Материал подготовлен на основе информации открытых источников.