Презентация на тему "линзы". Линзы: виды линз (физика)

Разделы: Физика

Цель урока:

  1. Обеспечить процесс усвоения основных понятий темы “линза” и принципа построения изображений, даваемых линзой
  2. Способствовать развитию познавательного интереса учащихся к предмету
  3. Способствовать воспитанию аккуратности в ходе выполнения чертежей

Оборудование:

  • Ребусы
  • Линзы собирающие и рассеивающие
  • Экраны
  • Свечи
  • Кроссворд

На какой урок Мы с вами пришли? (ребус 1) физика

Сегодня мы с вами будем изучать новый раздел физики – оптика . С этим разделом вы знакомились еще в 8 классе и, наверное, помните некоторые аспекты темы “Световые явления”. В частности давайте вспомним изображения, даваемые зеркалами. Но для начала:

  1. Какие вы знаете типы изображений? (мнимые и действительные).
  2. Какое изображение дает зеркало? (Мнимое, прямое)
  3. На каком расстоянии оно находится от зеркала? (на таком же как и предмет)
  4. А всегда ли правду нам говорят зеркала? (сообщение “Еще раз наоборот”)
  5. А всегда ли в зеркале можно увидеть себя таким, какой ты есть, пусть даже наоборот? (сообщение “Зеркала-дразнилки”)

Сегодня мы продолжим нашу лекцию и поговорим еще об одном предмете оптики. Угадайте. (ребус 2) линза

Линза – прозрачное тело, ограниченное двумя сферическими поверхностями.

Тонкая линза – ее толщина мала по сравнению с радиусами кривизны поверхности.

Основные элементы линзы:

Отличите на ощупь собирающую линзу от рассеивающей. Линзы стоят у вас на столе.

Как же построить изображение в собирающей и рассеивающей линзах?

1. Предмет за двойным фокусом.

2. Предмет в двойном фокусе

3. Предмет между фокусом и двойным фокусом

4. Предмет в фокусе

5. Предмет между фокусом и линзой

6. Рассеивающая линза

Формула тонкой линзы =+

А давно ли люди научились пользоваться линзами? (сообщение “В мире невидимого”)

А сейчас мы с вами попробуем получить изображение окна (свечи) с помощью имеющихся у вас на столе линз. (Опыты)

А зачем нам нужны линзы (для очков, лечение близорукости, дальнозоркости) – это ваше первое домашнее задание – подготовить сообщение об исправлении близорукости и дальнозоркости с помощью очков.

Итак, какое же явление мы использовали, чтобы вести сегодняшний урок (ребус 3) наблюдение.

А сейчас мы проверим, как же вы усвоили тему сегодняшнего урока. Для этого разгадаем кроссворд.

Домашнее задание:

  • ребусы,
  • кроссворды,
  • сообщения о близорукости и дальнозоркости,
  • лекционный материал

Зеркала-дразнилки

До сих пор шла речь о честных зеркалах. Они показывали мир таким, каков он есть. Ну разве что вывернутым справа на лево. Но бывают зеркала-дразнилки, кривые зеркала. Во многих парках культуры и отдыха есть такой аттракцион – “комната - смеха”. Там каждый желающий может увидеть себя то коротким и круглым, как кочан капусты, то длинным и тонким, как морковка, то похожим на проросшую луковицу: почти без ног и с раздутым животом, из которого, словно стрелка, тянется вверх узенькая грудь и уродливо вытянутая голова на тончайшей шее.

Ребята помирают со смеху, а взрослые стараясь сохранить серьезность, только качают головами. И от этого отражения их голов в зеркалах-дразнилках перекашиваются самым уморительным образом.

Комната смеха есть не везде, но зеркала-дразнилки окружают нас и в жизни. Ты, верно, не раз любовался своим отражением в стеклянном шарике с новогодней елки. Или в никелированном металлическом чайнике, кофейнике, самоваре. Все изображения очень забавно искажены. Это потому, что “зеркала” выпуклые. На руле велосипеда, мотоцикла, у кабины водителя автобуса тоже прикрепляют выпуклые зеркала. Они дают почти неискаженное, но несколько уменьшенное изображение дороги позади, а в автобусах еще и задней двери. Прямые зеркала тут не годятся: в них видно слишком мало. А выпуклое зеркало, даже маленькое, вмещает в себя большую картину.

Бывают иногда и вогнутые зеркала. Ими пользуются для бритья. Если близко подойти к такому зеркалу, увидишь свое лицо сильно увеличенным. В прожекторе тоже применено вогнутое зеркало. Это оно собирает лучи от лампы в параллельный пучок.

В мире невиданного

Около четырехсот лет назад искусные мастера в Италии и в Голландии научились делать очки. Вслед за очками изобрели лупы для рассматривания мелких предметов. Это было очень интересно и увлекательно: вдруг увидеть во всех подробностях какое-нибудь просяное зернышко или мушиную ножку!

В наш век радиолюбители строят аппаратуру, позволяющую принимать все более удаленные станции. А триста лет назад любители оптики увлекались шлифованием все более сильных линз, позволяющих дальше проникнуть в мир невидимого.

Одним из таких любителей был голландец Антоний Ван Левенгук. Линзы лучших мастеров того времени увеличивали всего в 30-40 раз. А линзы Левенгука давали точное, чистое изображение, увеличенное в 300 раз!

Словно целый мир чудес открывался перед пытливым голландцем. Левенгук тащил под стекло все, что только попадалось ему на глаза.

Он первый увидел микроорганизмы в капле воды, капиллярные сосуды в хвосте головастика, красные кровяные тельца и десятки, сотни других удивительных вещей, о которых до него никто не подозревал.

Но думайте что Левенгуку легко давались его открытия. Это был самоотверженный человек, отдавший исследованиям всю свою жизнь. Его линзы были очень неудобны, не то что теперешние микроскопы. Приходилось носом упираться в специальную подставку, чтобы во время наблюдения голова была совершенно неподвижна. И вот так, упершись в подставку, Левенгук делал свои опыты целых 60 лет!

Еще раз наоборот

В зеркале ты видишь себя не совсем так, как видят тебя окружающие. В самом деле, если ты зачесываешь волосы на одну сторону, в зеркале они будут зачесаны на другую. Если на лице родинки, они тоже окажутся не с той стороны. Если все это перевернуть зеркально, лицо покажется другим, незнакомым.

Как бы все-таки увидеть себя таким, каким видят окружающие? Зеркало все переворачивает наоборот… Ну что же! Давайте мы его перехитрим. Подсунем ему изображение, уже перевернутое, уже зеркальное. Пускай перевернет еще раз наоборот, и все станет на свое место.

Как это сделать? Да с помощью второго зеркала! Встаньте перед стенным зеркалом и возьмите еще одно, ручное. Держите его под острым углом к стенному. Ты перехитришь оба зеркала: в обоих появится твое “правое” изображение. Это легко проверить с помощью шрифта. Поднеси к лицу книжку с крупной надписью на обложке. В обоих зеркалах надпись будет читаться правильно, слева направо.

А теперь попробуй потяни себя за чуб. Уверен, что это удастся не сразу. Изображение в зеркале на этот раз совершенно правильное, не вывернутое справа налево. Именно поэтому ты и будешь ошибаться. Ты ведь привык видеть в зеркале зеркальное изображение.

В магазинах готового платья и в пошивочных ателье бывают трехстворчатые зеркала, так называемые трельяжи. В них тоже можно увидеть себя “со стороны”.

Литература:

  • Л. Гальперштейн, Забавная физика, М.: детская литература, 1994
  • 6.Интерференция в тонких пленках.
  • 7. Явление полного внутреннего отражения. Световоды.
  • 8.Применение интерференции. Интерферометр Майкельсона.
  • 9. Применение интерференции. Интерферометр Фабри-Перо.
  • 10. Просветление оптики.
  • 10. Метод зеркал Френеля для наблюдения итнтерференции света. Расчёт интерференционной картины.
  • Бизеркало Френеля
  • 12.Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и круглом диске. Графическое решение.
  • 13.Дифракция на одной щели. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
  • 16.Дифракция рентгеновских лучей. Условия Вульфа-Брэггов.
  • 17. Физические принципы получения и восстановления голограммы.
  • 18. Поляризация при отражении и преломлении. Формулы Френеля.
  • 19. Двойное лучепреломление. Его объяснение. Нарисуйте ход луча в двоякопреломляющем одноосном кристаллею. Поляризация при двойном лучепреломлении.
  • 20. Интерференция поляризованных лучей.
  • Xод луча при нормальном и наклонном падении.
  • 22. Анализ поляризованного света. Закон Малюса.
  • 23. Искусственное двойное лучепреломление. Эффект Керра. Оптический метод определения напряжений в образце.
  • 24. Вращение плоскости поляризации. Поляриметр-сахариметр.
  • 25.Рассеяние света. Степень поляризации рассеянного света.
  • 26. Дисперсия света. Электронная теория дисперсии. Ход белого луча в призме. Вывод формулы для угла отклонения лучей призмой.
  • 27. Излучение Вавилова – Черенкова.
  • 28. Эффект Доплера в оптике.
  • 29. Тепловое излучение.
  • 31. Вывод законов теплового излучения (законов Вина, Стефана-Больцмана) из формулы Планка.
  • 32. Оптическая пирометрия. Пирометр с исчезающей нитью.
  • 34. Фотоэффект. Законы ф-та. Объяснение ф-та. Зависимость максимальной кинетической энергии фотоэлектронов от частоты света.
  • 35. Фотоэффект.
  • 36. Противоречие законов фотоэффекта з-нам классической физики. Ур-е Эйнштейна для ф-та. Внутренний ф-т. Применение ф-та.
  • 37. Эффект Комптона.
  • 38. Давление света. Вывод формулы для давления света на основе фотонных представлений о свете.
  • 39. Тормозное рентгеновское излучение. График зависимости интенсивности от напряжения на лучевой трубке.
  • 41. Дискретность квантовых состояний, опыт Франка и Герца, интерпретация опыта; квантовые переходы, коэффициенты Эйнштейна для квантовых переходов. Связь между ними.
  • 42. Ядерная модель атома.
  • 43. Постулаты Бора. Теория атома водорода по Бору. Расчет энергетических состояний атома водорода с точки зрения теории Бора.
  • 44. Пользуясь соотношением неопределённости Гейзенберга, оценить минимальную энергию электрона в атоме водорода.
  • 46. Спектры щелочных элементов. Дуплетная структура спектров щелочных элементов.
  • 47. Опыт Штерна и Герлаха.
  • 48. Эффект Зеемана.
  • 49. Застройка электронных оболочек. Периодическая система элементов Менделеева.
  • 50. Характеристическое рентгеновское излучение. Закон Мозли. Дублетный характер рентгеновских спектров.
  • 51. Молекулярные спектры.
  • 52.Комбинационное рассеяние света.
  • 53.Люминисценция. Определение. Правило Стокса.
  • 54. Оптические квантовые генераторы. Свойства лазерного излучения.
  • 2. Свойства лазерного излучения.
  • 56. Нелинейная оптика.
  • 57. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер.
  • 59. Ядерные реакции.
  • 62. Фундаментальное взаимодействия. Элементарные частицы, их классификация, методы решения. Законы сохранения в физике элементарных частиц.
  • 63.Космическое излучение.
  • 61. Ядерный магн. Резонанс.
  • и1.Законы геометрической оптики.Их обоснование с точки зрения теории Гюйгенса.

    Oптика – наука о природе света и явлений, связанных с распространением и взаимодействием света. Впервые оптика, была сформулирована в сер.17в.Ньютоном и Гюйгенсом. Ими были сформулированы законы геометрической оптики:1). Закон прямолинейного распространения света – свет распространяется в виде лучей, доказательством чего является образование резкой тени на экране, если на пути световых лучей находится непрозрачная преграда. Доказательством является и образование полутени.

    2).закон независимости световых пучков – если световые потоки от двух независимых

    и
    сточников пересекаются, они друг друга не возмущают.

    3). Закон отражения света – если световой поток падает на границу раздела двух сред, то он может испытать отражение, преломление. При этом луч падающий, отраженный, преломлённый и нормаль лежат в одной плоскости. А угол падения равен углу отражения.

    4).синус угла падения относится к синусу угла отражения относятся также как показатели отношения преломления двух сред.
    Принцип Гюйгенса:если свет – это волна, то от источника света распространяется волновой фронт, а каждая точка волнового фронта в данный момент времени являются источником вторичных волн, огибающая вторичных волн представляет новый фронт волн.

    Первый закон Ньютон обьяснил из сох

    Ранения импульса 2-ой з-н динамики, а

    Гюйгенс не смог его объяснить. t

    2-ой закон:Гюйгенс:две несогласованные волны не возмущают друг друга

    Ньютон: не смог: столкновение частиц – возмущение.

    3-ий з-н:Ньютон: объяснил как и з-н сохранения импульса

    4-ый з-н.

    af-фронт пеломлённой волны.


    В 19 веке появляются ряд работ:Френеля, Юнга, которые док-ют, что свет это волна.В сер.19 века была создана теория электромагнитное поле Максвела, согласно теории, что эти волны являются поперечными и только свет волны испытывает на себе явление поляризации.

    Полное внутреннее отражение.

    2. Линзы. Вывод формулы линзы. Построение изображений в линзе. Линзы

    Линза представляет собой обычно стеклянное тело, ограниченное с двух сторон сферическими поверхностями; в частном случае одна из поверхностей линзы может быть плоскостью, которую можно рассматривать как сферическую поверхность бесконечно большого радиуса. Линзы могут быть изготовлены не только из стекла, но и из любого прозрачного вещества (кварц, каменная соль и тд.). Поверхности линз могут быть также более сложной формы, например цилиндрические, параболические.

    Точка О оптический центр линзы.

    О 1 О 2 толщина линзы.

    С 1 и С 2 – центры ограничивающих линзу сферических поверхностей.

    Всякая прямая проходящая через оптический центр называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей линзы наз. главной оптической осью. Остальные – побочными осями.

    Вывод формулы линзы

    ;
    ;
    ;
    ;

    EG=KA+AO+OB+BL;KA=h 2 /S 1 ; BL= h 2 /S 2;

    EG=h 2 /r 1 +h 2 /r 2 + h 2 /S 1 + h 2 /S 2 =U 1 /U 2 ; U 1 =c/n 1 ; U 2 =c/n 2

    (h 2 /r 1 +h 2 /r 2)=1/S 1 +1/r 1 +1/S 2 +1/r 2 =n 2 /n 1 (1/r 1 +1/r 2);

    1/S 1 +1/S 2 =(n 2 /n 1 -1)(1/r 1 +1/r 2);

    1/d+1/f=1/F=(n 2 /n 1 -1)(1/r 1 +1/r 2);

    r 1 ,r 2 >0 - выпуклая

    r 1 ,r 2 <0 вогнутая

    d=x 1 +F; f =x 2 +F;x 1 x 2 =F 2 ;

    Построение изображений в линзе

    3.Интерференция света. Амплитуда при интерференции. Расчет интерференционной картины в опыте Юнга.

    Интерференция света – это явление наложения волн от двух или нескольких когерентных источников, в результате которых происходит перераспределение энергии этих волн в пространстве. В области перекрытия волн колебания налагаются друг на друга, происходит сложение волн, в результате чего колебания в одних местах получаются более сильные, а в других- более слабые. В каждой точке среды результирующее колебание будет суммой всех колебаний, дошедших до данной точки. Результирующее колебание в каждой точке среды имеет постоянную во времени амплитуду, зависящую от расстояний точки среды от источников колебаний. Такого рода сложение колебаний называется интерференцией от когерентных источников.

    Возьмем точечный источник S , от которого распространяется сферическая волна. На пути волны поставлена преграда с двумя точечными отверстиями s1 и s2, расположенных симметрично по отношению к источнику S. Отверстия s1 и s2 колеблются с одинаковой амплитудой и в одинаковых фазах, т.к. их расстояния от

    источника S одинаковы. Справа от преграды будут распространяться две сферические волны, и в каждой точке среды колебание возникнет в результате сложения этих двух волн. Рассмотрим результат сложения в некоторой точке А, которая отстоит от источников s1 и s2 соответственно на расстоянии r1 и r2 .Колебания источников s1 и s2

    имеющие одинаковые фазы, можно представить в виде:

    Тогда колебания, дошедшие до точки А соответственно от источников s1 и s2:
    , где
    -частота колебаний. Разность фаз слагаемых колебаний в точке А будет
    . Амплитуда результирующего колебания зависит от разности фаз: если разность фаз =0 или кратна 2(разность хода лучей =0 или целому числу длин волн), то амплитуда имеет максимальное значение:А=А1+А2. Если разность фаз = нечетном числу (разность хода лучей = нечетному числу полуволн), то амплитуда имеет минимальное значение, равное разности слагемых амплитуд.

    Схема осуществления интерференции света по методу Юнга . Источником света служит ярко освещенная узкая щель S в экране А1 . Свет от нее падает на второй непрозрачный экран А2 , в котором имеются две одинаковые узкие щели S1 и S 2 , параллельные S. В пространстве за экраном А2 распространяются 2 сис-мы

    "

    Виды линз Тонкие – толщина линзы мала по сравнению с радиусами поверхностей линзы и расстоянием предмета от линзы. Формула тонкой линзы 1 1 + 1 = F d f . F= d f ; d+ f где F – фокусное расстояние; d- расстояние от предмета до линзы; f – расстояние от линзы до изображения оптический центр R 1 О О 1 главная оптическая ось R 2 О 2

    Характеристики линз 1. Фокусное расстояние Точка, в которой пересекаются после преломления в линзе лучи, называют главным фокусом линзы (F). F

    Характеристики линз 1. Фокусное расстояние У собирающей линзы два главных действительных фокуса. F Фокусное расстояние (F)

    Характеристики линз 2. Оптическая сила линзы Величина, обратная фокусному расстоянию, называется оптической силой линзы D=1/F Измеряется в диоптриях (дптр) 1 дптр=1/м Оптическую силу собирающей линзы считают положительной величиной, а рассеивающей – отрицательной.

    Охрана своего зрения Нужно: Нельзя: Ш рассматривать предмет на § читать во время еды, при свече, в движущемся транспорте и лежа; расстоянии не менее 30 см, сидеть за компьютером на расстоянии 6070 см. от экрана, от телевизора – 3 м. (экран должен находиться на уровне глаз); Ш чтобы свет падал с левой стороны; Ш умело пользоваться приборами домашнего обихода; Ш опасные для глаз виды работ выполнять в специальных очках; § смотреть телевизор непрерывно более 2 х часов; § чтобы было слишком яркое освещение помещения; § открыто смотреть на прямые лучи солнечного света; § тереть глаза руками при попадании пыли. Ш при попадании инородного тела протереть глаз чистой влажной салфеткой. Если вы наблюдаете нарушение вашего зрения – обратитесь к врачу (офтальмолог).

    Линзы, как правило, имеют сферическую или близкую к сферической поверхность. Они могут быть вогнутыми, выпуклыми или плоскими (радиус равен бесконечности). Обладают двумя поверхностями, через которые проходит свет. Они могут сочетаться по-разному, образуя различные виды линз (фото приведено далее в статье):

    • Если обе поверхности выпуклые (изогнуты наружу), центральная часть толще, чем по краям.
    • Линза с выпуклой и вогнутой сферами называется мениском.
    • Линза с одной плоской поверхностью носит название плоско-вогнутой или плоско-выпуклой, в зависимости от характера другой сферы.

    Как определить вид линзы? Остановимся на этом подробнее.

    Собирающие линзы: виды линз

    Независимо от сочетания поверхностей, если их толщина в центральной части больше, чем по краям, они называются собирающими. Имеют положительное фокусное расстояние. Различают следующие виды собирающих линз:

    • плоско-выпуклые,
    • двояковыпуклые,
    • вогнуто-выпуклые (мениск).

    Их еще называют «положительными».

    Рассеивающие линзы: виды линз

    Если их толщина в центре тоньше, чем по краям, то они носят название рассеивающих. Имеют отрицательное фокусное расстояние. Существуют такие виды рассеивающих линз:

    • плоско-вогнутые,
    • двояковогнутые,
    • выпукло-вогнутые (мениск).

    Их еще называют «отрицательными».

    Базовые понятия

    Лучи от точечного источника расходятся из одной точки. Их называют пучком. Когда пучок входит в линзу, каждый луч преломляется, изменяя свое направление. По этой причине пучок может выйти из линзы в большей или меньшей степени расходящимся.

    Некоторые виды оптических линз изменяют направление лучей настолько, что они сходятся в одной точке. Если источник света расположен, по меньшей мере, на фокусном расстоянии, то пучок сходится в точке, удаленной, по крайней мере, на ту же дистанцию.

    Действительные и мнимые изображения

    Точечный источник света называется действительным объектом, а точка сходимости пучка лучей, выходящего из линзы, является его действительным изображением.

    Важное значение имеет массив точечных источников, распределенных на, как правило, плоской поверхности. Примером может служить рисунок на матовом стекле, подсвеченный сзади. Другим примером является диафильм, освещенный сзади так, чтобы свет от него проходил через линзу, многократно увеличивающую изображение на плоском экране.

    В этих случаях говорят о плоскости. Точки на плоскости изображения 1:1 соответствуют точкам на плоскости объекта. То же относится и к геометрическим фигурам, хотя полученная картинка может быть перевернутой по отношению к объекту сверху вниз или слева направо.

    Схождение лучей в одной точке создает действительное изображение, а расхождение - мнимое. Когда оно четко очерчено на экране - оно действительное. Если же изображение можно наблюдать, только посмотрев через линзу в сторону источника света, то оно называется мнимым. Отражение в зеркале - мнимое. Картину, которую можно увидеть через телескоп - тоже. Но проекция объектива камеры на пленку дает действительное изображение.

    Фокусное расстояние

    Фокус линзы можно найти, пропустив через нее пучок параллельных лучей. Точка, в которой они сойдутся, и будет ее фокусом F. Расстояние от фокальной точки до объектива называют его фокусным расстоянием f. Параллельные лучи можно пропустить и с другой стороны и таким образом найти F с двух сторон. Каждая линза обладает двумя F и двумя f. Если она относительно тонка по сравнению с ее фокусными расстояниями, то последние приблизительно равны.

    Дивергенция и конвергенция

    Положительным фокусным расстоянием характеризуются собирающие линзы. Виды линз данного типа (плоско-выпуклые, двояковыпуклые, мениск) сводят лучи, выходящие из них, больше, чем они были сведены до этого. Собирающие объективы могут формировать как действительное, так и мнимое изображение. Первое формируется только в случае, если расстояние от линзы до объекта превышает фокусное.

    Отрицательным фокусным расстоянием характеризуются рассеивающие линзы. Виды линз этого типа (плоско-вогнутые, двояковогнутые, мениск) разводят лучи больше, чем они были разведены до попадания на их поверхность. Рассеивающие линзы создают мнимое изображение. И только когда сходимость падающих лучей значительна (они сходятся где-то между линзой и фокальной точкой на противоположной стороне), образованные лучи все еще могут сходиться, образуя действительное изображение.

    Важные различия

    Следует быть очень внимательными, чтобы отличать схождение или расхождение лучей от конвергенции или дивергенции линзы. Виды линз и пучков света могут не совпадать. Лучи, связанные с объектом или точкой изображения, называются расходящимися, если они «разбегаются», и сходящимся, если они «собираются» вместе. В любой коаксиальной оптической системе оптическая ось представляет собой путь лучей. Луч вдоль этой оси проходит без какого-либо изменения направления движения из-за преломления. Это, по сути, хорошее определение оптической оси.

    Луч, который с расстоянием отдаляется от оптической оси, называется расходящимся. А тот, который к ней становится ближе, носит название сходящегося. Лучи, параллельные оптической оси, имеют нулевое схождение или расхождение. Таким образом, когда говорят о схождении или расхождении одного луча, его соотносят с оптической осью.

    Некоторые виды которых такова, что луч отклоняется в большей степени к оптической оси, являются собирающими. В них сходящиеся лучи сближаются еще больше, а расходящиеся отдаляются меньше. Они даже в состоянии, если их сила достаточна для этого, сделать пучок параллельным или даже сходящимся. Аналогично рассеивающая линза может развести расходящиеся лучи еще больше, а сходящиеся - сделать параллельными или расходящимися.

    Увеличительные стекла

    Линза с двумя выпуклыми поверхностями толще в центре, чем по краям, и может использоваться в качестве простого увеличительного стекла или лупы. При этом наблюдатель смотрите через нее на мнимое, увеличенное изображение. Объектив камеры, однако, формирует на пленке или сенсоре действительное, как правило, уменьшенное в размерах по сравнению с объектом.

    Очки

    Способность линзы изменять сходимость света называется ее силой. Выражается она в диоптриях D = 1 / f, где f - фокусное расстояние в метрах.

    У линзы с силой 5 диоптрий f = 20 см. Именно диоптрии указывает окулист, выписывая рецепт очков. Скажем, он записал 5,2 диоптрий. В мастерской возьмут готовую заготовку в 5 диоптрий, полученную на заводе-изготовителе, и отшлифуют немного одну поверхность, чтобы добавить 0,2 диоптрии. Принцип состоит в том, что для тонких линз, в которых две сферы расположены близко друг к другу, соблюдается правило, согласно которому общая их сила равна сумме диоптрий каждой: D = D 1 + D 2 .

    Труба Галилея

    Во времена Галилея (начало XVII века), очки в Европе были широко доступны. Они, как правило, изготавливались в Голландии и распространялись уличными торговцами. Галилео слышал, что кто-то в Нидерландах поместил два вида линз в трубку, чтобы удаленные объекты казались больше. Он использовал длиннофокусный собирающий объектив в одном конце трубки, и короткофокусный рассеивающий окуляр на другом конце. Если фокусное расстояние объектива равно f o и окуляра f e , то дистанция между ними должна быть f o -f e , а сила (угловое увеличение) f o /f e . Такая схема называется трубой Галилея.

    Телескоп обладает увеличением 5 или 6 крат, сравнимым с современными ручными биноклями. Этого достаточно для многих захватывающих Можно без проблем увидеть лунные кратеры, четыре луны Юпитера, фазы Венеры, туманности и звездные скопления, а также слабые звезды в Млечном Пути.

    Телескоп Кеплера

    Кеплер услышал обо всем этом (он и Галилей вели переписку) и построил еще один вид телескопа с двумя собирающими линзами. Та, у которой большое фокусное расстояние, является объективом, а та, у которой оно меньше - окуляром. Расстояние между ними равно f o + f e , а угловое увеличение составляет f o /f e . Этот кеплеровский (или астрономический) телескоп создает перевернутое изображение, но для звезд или луны это не имеет значения. Данная схема обеспечила более равномерное освещение поля зрения, чем телескоп Галилея, и была более удобна в использовании, так как позволяла держать глаза в фиксированном положении и видеть все поле зрения от края до края. Устройство позволяло достичь более высокого увеличения, чем труба Галилея, без серьезного ухудшения качества.

    Оба телескопа страдают от сферической аберрации, в результате чего изображения не полностью сфокусированы, и хроматической аберрации, создающей цветные ореолы. Кеплер (и Ньютон) считал, что эти дефекты невозможно преодолеть. Они не предполагали, что возможны ахроматические виды которых станет известна лишь в XIX веке.

    Зеркальные телескопы

    Грегори предположил, что в качестве объективов телескопов можно использовать зеркала, так как в них отсутствует цветная окантовка. Ньютон воспользовался этой идеей и создал ньютоновскую форму телескопа из вогнутого посеребренного зеркала и положительного окуляра. Он передал образец Королевскому обществу, где тот находится и по сей день.

    Однолинзовый телескоп может проецировать изображение на экран или фотопленку. Для должного увеличения требуется положительная линза с большим фокусным расстоянием, скажем, 0,5 м, 1 м или много метров. Такая компоновка часто используется в астрономической фотографии. Людям, незнакомым с оптикой, может показаться парадоксальной ситуация, когда более слабая длиннофокусная линза дает большее увеличение.

    Сферы

    Высказывались предположения, что древние культуры, возможно, имели телескопы, потому что они делали маленькие стеклянные шарики. Проблема состоит в том, что неизвестно, для чего они использовались, и они, конечно, не могли бы лечь в основу хорошего телескопа. Шарики могли применяться для увеличения мелких объектов, но качество при этом вряд ли было удовлетворительным.

    Фокусное расстояние идеальной стеклянной сферы очень короткое и формирует действительное изображение очень близко от сферы. Кроме того, аберрации (геометрические искажения) значительные. Проблема кроется в расстоянии между двумя поверхностями.

    Однако если сделать глубокую экваториальную канавку, чтобы блокировать лучи, которые вызывают дефекты изображения, она превращается из очень посредственной лупы в прекрасную. Такое решение приписывается Коддингтону, а увеличитель его имени можно приобрести сегодня в виде небольших ручных луп для изучения очень маленьких объектов. Но доказательств того, что это было сделано до 19-го века, нет.

    Выполнила: учитель Кузнецкой СОШ Пряхина Н.В.

    План урока

    Этапы урока, содержание

    Форма

    Деятельность учителя

    Деятельность учеников

    1.Повторение домашнего задания 5 мин

    2.1. Введение понятия линзы

    Мысленный эксперимент

    Проводит мысленный эксперимент, объясняет, демонстрирует модель, рисует на доске

    Проводят мысленный эксперимент, слушают, задают вопросы

    2.2. Выделение признаков и свойств линзы

    Ставит проблемные вопросы, приводит примеры

    2.3. Объяснение хода лучей в линзе

    Ставит проблемные вопросы, рисует, объясняет

    Отвечают на вопросы, делают выводы

    2.4. Введение понятия фокуса, оптической силы линзы

    Ставит наводящие вопросы, рисует на доске, объясняет, показывает

    Отвечают на вопросы, делают выводы, работают с тетрадью

    2.5. Построение изображения

    Объяснение

    Рассказывает, демонстрирует модель, показывает транспаранты

    отвечают на вопросы, рисуют в тетради

    3.Закрепление нового материала 8 мин

    3.1. Принцип построения изображения в линзах

    Ставит проблемные вопросы

    Отвечают на вопросы, делают выводы

    3.2. Решение теста

    Работа в парах

    Коррекция, индивидуальная помощь, контроль

    Отвечают на вопросы теста, помогают друг другу

    4.Домашнее задание 1 мин

    §63,64, упр.9 (8)

    Уметь составлять рассказ по конспекту.

    Урок. Линза. Построение изображения в тонкой линзе .

    Цель: Дать знания о линзах, их физических свойствах и характеристиках. Сформировать практические умения применять знания о свойствах линз для нахождения изображения графическим методом.

    Задачи : изучить виды линз, ввести понятие тонкой линзы как модели; ввести основные характеристики линзы – оптический центр, главная оптическая ось, фокус, оптическую силу; формировать умения строить ход лучей в линзах.

    Использовать решение задач для продолжения формирования расчетных навыков.

    Структура урока: учебная лекция (в основном новый материал излагает преподаватель, но учащиеся ведут конспект и по ходу изложения материала отвечают на вопросы преподавателя).

    Межпредметные связи: черчение (построение лучей), математика (расчеты по формулам, использование микрокалькуляторов для сокращения затрат времени на вычисления), обществоведение (понятие о законах природы).

    Учебное оборудование: фотографии и иллюстрации физических объектов из мультимедийного диска «Мультимедиа библиотека по физике».

    Конспект урока.

    С целью повторения пройденного, а также проверки глубины усвоения знаний учащимися, проводится фронтальный опрос по изученной теме:

    Какое явление называется преломлением света? В чем его суть?

    Какие наблюдения и опыты наводят на мысль об изменении направления распространения света при переходе его в другую среду?

    Какой угол – падения или преломления – будет больше в случае перехода луча света из воздуха в стекло?

    Почему, находясь в лодке, трудно попасть копьем в рыбу, плавающую невдалеке?

    Почему изображение предмета в воде всегда менее ярко, чем сам предмет?

    В каком случае угол преломления равен углу падения?

    2. Изучение нового материала:

    Линза – оптически прозрачное тело, ограниченное сферическими поверхностями.�

    Выпуклые линзы бывают: двояковыпуклые(1), плосковыпуклые (2), вогнуто-выпуклые (3).

    Вогнутые линзы бывают: двояковогнутые (4), плосковогнутые (5), выпукло-вогнутые (6).

    В школьном курсе мы будем изучать тонкие линзы.

    Линза, толщина которой много меньше радиусов кривизны ее поверхностей называют тонкой линзой.

    Линзы, которые преобразуют пучок параллельных лучей в сходящийся и собирают его в одну точку называют собирающими линзами.

    Линзы, которые преобразуют пучок параллельных лучей в расходящийся называют рассеивающими линзами.�Точка в которой лучи после преломления собираются, называется фокусом . Для собирающей линзы – действительный. Для рассеивающей – мнимый.

    Рассмотрим ход пучков света через рассеивающую линзу:

    Вводим и показываем основные параметры линз:

    Оптический центр линзы;

    Оптические оси линзы и главную оптическую ось линзы;

    Главные фокусы линзы и фокальную плоскость.

    Построение изображений в линзах:

    Точечный объект и его изображение всегда лежат на одной оптической оси.

    Луч, падающий на линзу параллельно оптической оси, после преломления через линзу проходит через фокус, соответствующий этой оси.

    Луч, проходящий через фокус до собирающей линзы, после линзы распространяется параллельно оси, соответствующей этому фокусу.

    Луч, параллельный оптической оси, пересекается с ней после преломления в фокальной плоскости.

    d – расстояние предмета до линзы

    F – фокусное расстояние линзы.

    1. Предмет находится за двойным фокусным расстоянием линзы: d > 2F .

    Линза даст уменьшенное,перевернутое, действительное изображение предмета.

    Предмет находится между фокусом линзы и ее двойным фокусом: F< d < 2F

    Линза дает увеличенное, перевернутое, действительное изображение предмета.�

    Предмет помещен в фокус линзы: d = F

    Изображение предмета будет размыто.

    4. Предмет находится между линзой и ее фокусом: d < F

    изображение предмета увеличенное, мнимое, прямое и расположено по ту же сторону от линзы, что и предмет.

    5. Изображения, даваемые рассеивающей линзой.

    линза не дает действительных изображений, лежащих по ту же сторону от линзы, что и предмет.

    Формула тонкой линзы:

    Формула для нахождения оптической силы линзы:

    величина, обратная фокусному расстоянию, называется оптической силой линзы. Чем короче фокусное расстояние, тем оптическая сила линзы больше.

    Оптические приборы:

    фотоаппарат

    Киноаппарат

    Микроскоп

    Тест.

    Какие линзы изображены на рисунках?

    С помощью какого прибора можно получить изображение показанное на рисунке.

    а. фотоаппарат б. киноаппарат в. лупа

    Какая линза изображена на рисунке?

    а. собирающая

    б. рассеивающая

    вогнутые