Почему ферменты ускоряют химические реакции. Ферменты, которые ускоряют химические реакции без повышения температуры и получения энергии извне

Ферменты — биологические катализаторы , без участ которых не обходится ни один жизненный процесс. Бони характеризуются способностью: реагировать с определенной ре вещества — субстратом; ускорять биохимические ре акции, которые обычно идут очень медленно; действовать при ду же незначительных концентрациях субстрата, при этом н » нуждаясь поступления энергии извне; функционирования ваты в зависимости от температуры и pH среды.

Биологический катализ отмечается чрезвычайно < высокой эффективностью и способностью ферментов четкие < выделять вещество, с которой они взаимодействуют.

В молекуле фермента содержится группа особо активных аминокислот, которые образуют активный центр фермента (129), способного быстро взаимодействовать только с соответствующей веществом — субстратом (130). При этом субстрат является специфическим для определенного фермента и подходит, как по своей структуре, так и физико — химически ми свойствами к активному центру «как ключ к замку », а потому ход реакции субстрата с активным центром осуществляется мгновенно. Вследствие реакции возникает фермент — субстратный комплекс, который затем легко распадается, образуя уже новые продукты. Вещества, образовавшиеся сразу отделяются от фермента, который восстанавливает свою структуру и становится способным вновь осуществлять ту же реакцию. Через секунду фермент реагирует с миллионами молекул субстрата и сам при этом не разрушается.

Благодаря ферменту биохимические реакции возможны при очень незначительной концентрации вещества в клетке, что чрезвычайно важно, особенно в тех случаях, когда с помощью ферментов организм избавляется вредных веществ. Уже известный вам фермент каталаза за одну секунду разрушает столько же молекул водород перокспду, сколько в обычных условиях в течение 300 лет.

Каждый фермент катализирует только определенную реакцию. Следует отметить, что он не определяет самой возможности реакции, а только ускоряет ее в миллионы раз, делая ее скорость « космической ». Дальнейшее преобразование вещества, образовавшегося в результате одной ферментативной реакции, осуществляет второй фермент, далее третий и т. д. В клетках животных и растений содержатся тысячи различных ферментов, поэтому они не просто ускоряют тысячи химических реакций, но и контролируют их ход.

Скорость действия фермента зависит от температуры (эффективная — около +40 ° С) и определенных значений pH раствора, специфического для конкретного фермента. Для большинства ферментов значение pH лежит в пределах от 6,6 до 8,0, хотя есть и исключения. (Вспомните, при каких значениях pH лучше действуют те или иные ферменты.)

Повышение температуры до +50 ° С приводит к разрушению активного центра фермента и он навсегда теряет возможность выполнять свои функции. Это обусловлено тем, что происходит необратимое нарушение третичной структуры белка, и после охлаждения молекула фермента не восстанавливает свою структуру. Именно этим объясняется, почему даже непродолжительное воздействие высокой температуры убивает живые существа. Однако существуют организмы, ферменты которых приспособились к высоким температурам. Например, в Африке в горячих источниках с температурой воды около +60 ° С живет и размножается представитель класса ракообразных термосбена удивительная, а некоторые бактерии живут даже в водоемах, где температура воды более 70 ° С.

Разрушение структуры фермента могут вызвать яды, попадающие в организм даже в очень незначительном количестве. Эти вещества, называемые ингибиторами (от лат. Ингибио — сдерживаю), необратимо сочетаются с активным центром фермента и таким образом блокируют его деятельность.

Одной из самых сильных ядов, как известно, является цианиды (соли синильной кислоты HCN), блокирующие работу дыхательного фермента цитохромоксидазы. Поэтому даже незначительное количество этого вещества, попав в организм, вызывает смерть от удушья. Ингибиторами являются ионы тяжелых металлов (Hg2 +, Pb2 +), а также соединения мышьяка, которые образуют соединения с аминокислотами, входящих в активный центр фермента.

Глава IV. ФЕРМЕНТЫ

§ 11. Общие представления о ферментах

Ферменты, или энзимы, – это биологические катализаторы, ускоряющие химические реакции. Общее число известных ферментов составляет несколько тысяч. Практически все химические реакции, протекающие в живых организмах, осуществляются при их участии. Ферменты ускоряют химические реакции в 10 8 – 10 20 раз. Они играют решающую роль в важнейших биологических процессах: в обмене веществ, в мышечном сокращении, в обезвреживании чужеродных веществ, попавших в организм, в передаче сигнала, в транспорте веществ, свертывании крови и многих других. Для клетки ферменты абсолютно необходимы, без них клетка, а следовательно, и жизнь, не могли бы существовать.

Слово фермент произошло от латинского fermentum – закваска, энзим в переводе с греческого означает «в дрожжах». Первые сведения о ферментах были получены еще в XIX веке, но только в начале XX века были сформулированы теории действия ферментов, и лишь в 1926 году Джеймс Самнер впервые получил очищенный фермент в кристаллическом виде – уреазу Уреаза катализирует гидролитическое расщепление мочевины:

Самнер обнаружил, что кристаллы уреазы состоят из белка. В 30-е гг. прошлого столетия Джон Нортон с коллегами получили в кристаллическом виде пищеварительные ферменты трипсин и пепсин, а также установили, что они, как и уреаза, по своей природе являются белками. В результате этих исследований сформировалась точка зрения о белковой природе ферментов, которая многократно впоследствии подтверждалась. И только значительно позже у некоторых РНК была обнаружена способность осуществлять катализ; такие РНК получили название рибозимов, или РНК-ферментов. Рибозимы составляют незначительную часть от всех ферментов, поэтому мы далее будем говорить о ферментах белках.

Интересно знать! Рибонуклеаза Р – фермент, расщепляющий РНК, - состоит из двух компонентов РНК и полипептида. При высокой концентрации ионов магния наличие белкового компонента становится не нужным. Катализировать реакцию может и одна РНК.

Сходства и различия ферментов с небелковыми катализаторами

Ферменты имеют ряд общих свойств с химическими небелковыми катализаторами:

а) не расходуются в процессе катализа и не претерпевают необратимых изменений;

b) ускоряют как прямую, так и обратную реакции, не смещая при этом химического равновесия;

c) катализируют только те реакции, которые могут протекать и без них;

d) повышают скорость химической реакции за счет снижения энергии активации (рис. 26).

Химическая реакция протекает потому, что некоторая доля молекул исходных веществ обладает большей энергией по сравнению с другими молекулами, и этой энергии достаточно для достижения переходного состояния. Ферменты, как и химические катализаторы, снижают энергию активации, взаимодействуя с исходными молекулами, в связи с этим число молекул, способных достичь переходного состояния, возрастает, вследствие этого увеличивается и скорость ферментативной реакции.

Рис.26. Влияние фермента на энергию активации

Ферменты, несмотря на определенное сходство с небелковыми химическими катализаторами, отличаются от них по ряду параметров:

a) ферменты обладают более высокой эффективностью действия, например, фермент каталаза, катализирующий реакцию: 2Н 2 О 2 = 2Н 2 О + О 2 , ускоряет ее приблизительно в 10 12 раз, эффективность же платины как катализатора этой реакции приблизительно в один миллион раз ниже;

b) ферменты обладают более высокой специфичностью в сравнении с небелковыми катализаторами, они ускоряют более узкий круг химических реакций, например, уже упомянутый фермент уреаза катализирует только одну реакцию – гидролиз мочевины, протеазы способны расщеплять только белки, но не действуют на углеводы, липиды, нуклеиновые кислоты и другие вещества. С другой стороны, платина способна катализировать различные реакции (гидрирования, дегидрирования, окисления), она катализирует как реакцию получения аммиака из азота и водорода, так и гидрирование непредельных жирных кислот (эту реакцию используют для получения маргарина);

c) ферменты эффективно действуют в мягких условиях: при температуре 0 – 40 о С, при атмосферном давлении, при значениях рН, близких к нейтральным, в более жестких условиях ферменты денатурируют и не проявляют своих каталитических качеств. Для эффективного химического катализа часто требуются жесткие условия – высокое давление, высокая температура и наличие кислот или щелочей. Например, синтез аммиака в присутствии катализаторов проводят при 500 – 550 о С и давлении 15 – 100 МПа;

d) активность ферментов в сравнении с химическими катализаторами может более тонко регулироваться различными факторами. В клетке существует множество веществ как увеличивающих, так и снижающих скорости ферментативных реакций.

Структура ферментов

Относительная молекулярная масса ферментов может колебаться от 10 4 до 10 6 и более. Ферменты – это, как правило, глобулярные белки. Одни ферменты являются простыми белками и состоят только из аминокислотных остатков (рибонуклеаза, пепсин, трипсин), активность других зависит от наличия в их составе дополнительных химических компонентов, так называемых кофакторов . В качестве кофакторов могут выступать ионы металлов Fe 2+ , Mn 2+ , Mg 2+ , Zn 2+ или сложные органические вещества, которые называют также коферментами . В состав многих коферментов входят витамины. В качестве примера на рис. 27 приведена структура кофермента А (КоА).

Рис. 27. Кофермент А

Если кофермент прочно связан с ферментом, то в этом случае он представляет простетическую группу сложного белка. Кофакторы могут выполнять следующие функции:

a) участие в катализе;

b) осуществление взаимодействия между субстратом и ферментом;

c) стабилизация фермента.

Каталитически активный комплекс фермент – кофактор называют холоферментом . Отделение кофактора от холофермента приводит к образованию неактивного апофермента :

Холофермент апофермент + кофактор.

В молекуле фермента присутствует активный центр . Активный центр – это область молекулы фермента, в которой происходит связывание субстрата и его превращение в продукт реакции. Размеры фермента, как правило, значительно превышают размеры их субстратов. Активный центр занимает лишь незначительную часть молекулы фермента (рис. 28).

Рис. 28. Относительные размеры молекулы фермента и субстрата

Активный центр образуют аминокислотные остатки полипептидной цепи. В двухкомпонентных ферментах в состав активного центра может входить и небелковый компонент. В молекуле фермента присутствуют аминокислотные остатки, которые не участвуют в катализе и во взаимодействии с субстратом. Однако они весьма существенны, так как формируют определенную пространственную структуру фермента. Наиболее часто в составе активного центра содержатся полярные (серин, треонин, цистеин) и заряженные (лизин, гистидин, глутаминовая и аспарагиновая кислоты) аминокислотные остатки. Аминокислотные остатки, образующие активный центр, в полипептидной цепи находятся на значительном расстоянии и оказываются сближенными при формировании третичной структуры (рис. 29).

Рис. 29. Активный центр

Например, в активный центр химотрипсина (пищеварительного фермента, расщепляющего белки) входят остатки гистидина – 57, аспарагиновой кислоты – 102, серина – 195 (цифрами указаны порядковые номера в полипептидной цепи). Несмотря на удаленность друг от друга этих аминокислотных остатков в полипептидной цепи, в пространстве они расположены рядом и формируют активный центр фермента.

Интересно знать! При иммунизации животных веществом, являющимся аналогом переходного состояния какого либо субстрата, могут быть получены антитела, способные катализировать преобразование субстрата, такие антитела получили название каталитических или абзимов. Используя такой подход, можно направленно получать катализаторы практически для любой реакции.

Некоторые ферменты синтезируются в неактивной форме в виде так называемых проферментов , которые затем под действием определенных факторов активируются. Например, пищеварительные ферменты химотрипсин и трипсин образуются в результате активации химотрипсиногена и трипсиногена.

Номенклатура и классификация ферментов

Часто названия ферментов образуются путем прибавления суффикса к названию субстрата, на который он воздействует. Например, названия фермента уреаза произошло от английского слова urea – мочевина, протеазы (ферменты, расщепляющие белки) – от слова протеин. Многие ферменты имеют тривиальные названия, не связанные с названием их субстратов, например, пепсин и трипсин. Существуют и систематические названия ферментов, включающие названия субстратов и отражающие характер катализируемой реакции.

Интересно знать! Фермент, катализирующий реакцию

АТФ + D -глюкоза АДФ + D -глюкоза – 6 – фосфат,

носит систематическое название АТФ: гексоза 6-фосфотрансфераза.

В соответствии с катализируемой реакцией все ферменты делятся на 6 классов.

1. Оксидоредуктазы . Катализируют окислительно-восстановительные реакции

2. Трансферазы . Катализируют реакции межмолекулярного переноса групп:

АB + C = AC + B.

3. Гидролазы . Катализируют реакции гидролиза:

АВ + Н 2 О = АОН + ВН.

4. Лиазы . Катализируют реакции присоединения групп по двойным связям и обратные реакции.

5. Изомеразы . Катализируют реакции изомеризации (внутримолекулярный перенос групп).

6. Лигазы . Катализируют соединение двух молекул, сопряженное с гидролизом АТФ.

В свою очередь каждый класс подразделяют на подклассы, подклассы – на подподклассы. Ферментам, образующим подподклассы, присваивается порядковый номер. В итоге каждый фермент имеет свой четырехзначный номер.

Ферменты - это истинные катализаторы. Они значительно повышают скорость строго определенных химических реакций, которые в отсутствие фермента протекают очень медленно. Ферменты не могут влиять на положение равновесия ускоряемых ими реакций, при этом в ходе реакций они не расходуются и не претерпевают необратимых изменений.

Каким образом катализаторы, в частности ферменты, повышают скорость химических реакций? Прежде всего мы должны вспомнить о том, что в любой популяции молекул индивидуальные молекулы при постоянной температуре сильно различаются по количеству содержащейся в них энергии и что распределение общей энергии между молекулами описывается колоколообразной кривой. Одни молекулы обладают высокой энергией, а другие более низкой, но в большинстве из них содержится количество энергии, близкое к среднему значению. Химическая реакция типа протекает потому, что в любой момент времени некоторая доля молекул А обладает большей внутренней энергией по сравнению с другими молекулами данной популяции, и этой энергии оказывается достаточно для достижения ими вершины энергетического барьера (рис. 9-3) и перехода в активную форму, называемую переходным состоянием. Энергией активации называется количество энергии в калориях, необходимое для того, чтобы все молекулы I моля вещества при определенной температуре достигли переходного состояния, соответствующего вершине энергетического (активационного) барьера. В этой точке существует равная вероятность того, что достигшие ее молекулы вступят в реакцию с образованием продукта Р или вернутся обратно на уровень непрореагировавших молекул А (рис. 9-3). Скорость любой химической реакции пропорциональна концентрации молекул, находящихся в переходном состоянии. Следовательно, скорость химической реакции будет очень высокой, если на вершине энергетического барьера находится значительная доля молекул А, и очень низкой, если доля таких молекул невелика.

Существуют два основных пути повышения скорости химической реакции.

Рис. 9-3. Катализаторы снижают энергию активации (энергетический, или активационный, барьер) химических реакций, не влияя при этом на полное изменение свободной энергии в ходе реакции и на конечное состояние равновесия. Вершина энергетического барьера соответствует переходному состоянию.

Первый путь повышение температуры, т.е. ускорение теплового движения молекул, которое приводит к увеличению доли молекул, обладающих достаточной внутренней энергией для достижения переходного состояния. Как правило, повышение температуры на 10 °С вызывает ускорение химической реакции приблизительно в два раза.

Второй путь ускорения химической реакции добавление катализатора. Катализаторы ускоряют химические реакции, находя «обходные пути», позволяющие молекулам преодолевать активационный барьер на более низком энергетическом уровне. Катализатор (обозначим его буквой С) на промежуточной стадии реакции взаимодействует с реагентом А с образованием нового комплекса или соединения СА, переходному состоянию которого соответствует значительно более низкая энергия активации по сравнению с переходным состоянием реагента А в некатализируемой реакции (рис. 9-3). Затем комплекс реагент-катализатор (СА) распадается на продукт Р и свободный катализатор, который может опять соединиться с другой молекулой А и повторить весь цикл. Именно таким образом катализаторы снижают энергию активации химической реакции; в их присутствии гораздо более значительная доля молекул данной популяции вступает в реакцию в единицу времени. Ферменты, так же как и другие катализаторы, соединяются с своими субстратами в ходе каталитического цикла.

ОБЩАЯ ХАРАКТЕРИСТИКА ФЕРМЕНТОВ

    Ферменты – биологические катализаторы.

    Химическая природа ферментов. Активный центр ферментов.

    Механизм ферментативного катализа.

I . Ферменты биологические катализаторы белковой природы, способные во много раз ускорять химические реакции, протекающие в организме, но сами не входящие в состав конечных продуктов реакции.

Вещества, на которое действует фермент, называют субстратами.

Все многообразие биохимических реакций, протекающие в микроорганизмах, растениях и животных катализируется соответствующими ферментами. Велика роль ферментов в технологии пищевых продуктов. В основе производства любого пищевого продукта лежат либо биохимические (ферментативные), либо физико-химические процессы, либо эти процессы взаимосвязаны.

В отличие от неорганических катализаторов ферменты имеют свои особенности:

    Скорость ферментативного катализа на несколько порядков выше (от 10 3 до 10 9), чем не биологического катализатора;

    действие каждого фермента высокоспецифично, т.е. каждый фермент действует только на свой субстрат или группу родственных субстратов;

    ферменты катализируют химические реакции в мягких условиях, т.е. при обычном давлении, высокой температуре (20-50С) и при значениях рН среды, в большинстве случаев близких к нейтральной.

С точки зрения локализации ферментов в клетке их подразделяют на внеклеточные и внутриклеточные.

Внеклеточные ферменты выделяются живой клеткой во внешнюю среду,внутриклеточные – находятся либо в клеточных органеллах, либо в комплексе с надмолекулярными структурами.

Особую группу ферментов составляют полиферментные комплексы, в состав которых входит ряд ферментов, катализирующих последовательные реакции превращения какого-либо субстрата. Эти комплексы локализованы во внутримолекулярных структурах таким образом, что каждый фермент располагается в непосредственной близости от фермента, катализирующего реакцию в цепи данной последовательности реакций. Благодаря такому расположению ферментов процесс диффузии субстрата и продуктов реакции сводится к минимуму.

II . Ферменты – высокомолекулярные белковые соединения.

Как и другие белки, ферменты имеют 4 уровня структуры, им присущи все физико-химические свойства белков, и лишь одна отличительная особенность – способность ускорять химические реакции. Ферменты могут быть простыми – однокомпонентными и сложными двухкомпонентными.

Однокомпонентные ферменты – построены из полипептидных цепей и при гидролизе распадаются только до аминокислот.

Двухкомпонентные ферменты – состоят из белковой части – апоформента и небелковой части – кофактора . Оба компонента в отдельности лишены ферментативной активности. Только соединившись вместе (холофермент ) они приобретают свойства, характерные для биокатализаторов. Роль кофактора может выполнять какой-либо ион (Zn 2+ , Mg 2+ , Fe 2+ , Cu 2+ , реже K + и Na +) или органическое соединение (витамины, нуклеотиды). Кофакторы органической природы называются коферментами.

Тип связи между кофактором и апоферментом может быть различным. В некоторых случаях они существуют отдельно и связываются только во время протекания реакции; в других случаях кофактор и апофермент связаны постоянно, иногда прочными, ковалентными связями.

Активный центр ферментов –это локальный участок молекулы фермента, который участвует в акте катализа. Воднокомпонентных ферментахактивный центр образуется в результате определенной ориентации аминокислотных остатков полипептидной цепи. Обычно в его формировании принимает участие небольшое количество аминокислот, в пределах 12-16. Функциональные группы этих аминокислот могут принадлежать звеньям полипептидной цепи, удаленным друг от друга. Их сближение связано с формированием третичной структуры ферменты.

В двухкомпонентных ферментах активный центр представляет собой комплекс кофактора и некоторых примыкающих к нему аминокислотных остатков.

В активном центре различают контактный (якорный ) участок, функция которого – связывать субстрат, икаталитический – где происходит превращение субстрата в продукты реакции после его связывания контактным участком. В формировании этих участков принимают участие следующие функциональные группы: СООН-группы дикарбоновых аминокислот или концевые группы полипептидной цепи; имидазольная группа гистидина; ОН-группа серина;NH 2 - группа лизин и концевые группы полипептидной цепи; фенольная группа тирозина и гидрофобные остатки алифатических аминокислот.

III . Скорость любой ферментативной реакции определяетсяэнергетическим барьером , который необходимо преодолеть реагирующим молекулам. По Аррениусу, химическая реакция с точки зрения энергетики процесса описывается уравнением

N = N 0 e -(E акт /RT) ,

где N– число активных молекул;N 0 - общее число реагирующих молекул; е – основание натурального логарифма;R– газовая постоянная;T– абсолютная температура; Е акт – энергия активации.

Энергия активации – дополнительное количество энергии, необходимое для того, чтобы все молекулы преодолели энергетический барьер реакции и вступили в неё. Эта энергия представляет собой разность общей энергии реагирующих молекул и энергиивозбужденного переходного состояния. Чем больше энергия активации в реагирующей системе, тем выше энергетический барьер и тем ниже скорость реакции.

Важнейшая функция фермента – снижение энергии активации катализируемого про­цес­са. На рис. 1 представлен график изменения энергии не­фер­ментативной (1) и ферментативной (2) реакций. Фермент снижает высоту энерге­ти­ческого барьера (Е акт  Е акт).

Механизм фермен­татив­ного катализа во многом остается пока еще не выясненным. Однако большую роль в создании ферментативной кинетики сыграли работы М. Михаэлиса и М. Ментен, в которых было развито представление о фермент-субстратном комплексе . Образование этого комплекса и ведет к снижению энергии активации реакции.

Процесс ферментативного катализа можно условно подразделить на три стадии:

    Стерическое связывание субстрата Sс активным центром фер­мента Е (образование фермент-субстратного комплекса ЕS).

    Преобразование первичного комплекса ЕSв активированный переходный комплекс ЕS ≠ .

    Отделение конечного продукта Р реакции от фермента.

Первая стадия непродолжительна по времени и зависит от концентрации субстрата и фермента в среде, от скорости диффузии субстрата к активному центру фермента. В образовании комплекса ЕSмогут уча­ствовать в различных сочетаниях как ковалентные, координационные, ионные связи, так и менее прочные формы связей - электростатическое притяжение полярных групп, ван-дер-ваальсовы силы сцепления между неполярными участками молекул, водородные связи. Характер этих связей обусловлен химическими особенностями и субстрата, и функциональных групп, входящих в активный центр фермента.

Вторая стадия является, собственно, актом катализа, т.е. актом разрыва или образования в субстрате новых связей; она наиболее медленная и лимитирует скорость протекания химической реакции. На этой стадии и происходит снижение энергии активации ферментативной реакции, за счет образования активного переходного комплекса ЕS ≠ .

На молекулярном уровне более четкое представление о механизме действия ферментов дает теория кислотно-основного катализа. Любая реакция, идущая с разрывом ковалентных связей, предполагает участие двух противоположных по характеру электронных компонен­тов. Электроны разрываемой связи должны оттягиваться к электро-фильному компоненту и уходить от нуклеофильного. Реагенты, кото­рые могли бы обусловить такую электронную перестройку - это кислота и основание. Однако в одном и том же растворе создать одновре­менно высокие концентрации обоих компонентов невозможно, посколь­ку они нейтрализуют друг друга. В белковой молекуле фермента бла­годарязакреплению на каталитической площадке электрофильных и нуклеофильных групп не происходит прямой реакции нейтрализации. Это, собственно, и определяет акт катализа. Находясь на определенном расстоянии друг от друга, электрофильные и нуклеофильные группы каталитического участка фермента не только связываются с реаги­рующими группами субстрата, но и оказывают сильное поляризующее действие на группы субстрата. К этому следует добавить возможность флуктуации зарядов в комплексе ЕS, которая создает высокую степень эффективности данной поляризации. Это и является причиной снижения величины энергии активации при ферментативном катализе.

В соответствии с теорией ковалентного катализа некоторые фер­менты взаимодействуют со своими субстратами, образуя нестабильные, ковалентно связанные фермент-субстратные комплексы. Из этих комп­лексов в ходе последующей реакции образуются продукты реакции, при­чем значительно быстрее, чем в случае некатализируемых реакций.

Таким образом, третья стадия, завершающаяся образованием продуктов реакции, обеспечивается процессами, протекающими на пре­дыдущих стадиях.

Ферменты -белки, ускоряющие химические реакции. Все ферменты- это глобулярные белки. При реакции не расходуются. Обладают всеми свойствами белков.

Кроме ферментов каталитической активностью обладают некоторые РНК (рибозимы).

Отличаются:

1.Специфичность действия.

2.Высокая эффективность действия.

3.Способность к регулированию.

Есть 6 классов ферментов.

Классы ферментов:

1.Оксиредуктазы-катализируют ОВР с участием 2 субстратов (перенос электронов или атомов водорода с одного субстрата на другой).

Дегидрогеназы- катализируют реакции отщепления водорода (дегидрирование). В качестве акцептора электронов выступают NAD+, NADP+, FAD, FMN.

Оксидазы-акцептором электрона служит молекулярный кислород.

Оксигеназы (гидроксилазы)-атом кислорода из молекулы кислорода присоединяется к субстрату.

2.Трансферазы-катализируют пренос функциональных групп от одного соединения к другому. Подразделяются в зависимости от переносимых групп.

3.Гидролазы-катализируют реакции гидролиза (расщепление ковалентной связи с присоединением молекулы воды по месту разрыва).

4.Лиазы-отщепление от субстрата негидролитическим путем определенной группы (CO2, H2O, NH2, SH2).

5.Изомеразы- катализируют различные внутримолекулярные превращения. Если переносится группа внутри одной молекулы, то фермент называют мутазой.

6.Лигазы (синтетазы)- реакции присоединения друг к другу 2 молекул с образованием ковалентной связи. Процесс сопряжен с разрывом связи АТФ или другого макроэргического соединения. Если АТФ-синтетаза, если не АТФ-синтаза.

Активный центр фермента -совокупность участка связывания субстрата и каталитического участка. Состоит из аминокислотных остатков.

Участок связывания субстрата - участок в котором субстрат при помощи нековалентных связей связывается с ферментом, формируя фермент-субстратный комплекс.

Каталитический участок - участок в котором субстрат претерпевает химическое превращение в продукт.

Кофактор - небелковое соединение, переводящее фермент в активную форму (чаще всего это ионы металлов).

Кофермент - белковое соединение, переводящее фермент в активную форму (производное витаминов).

Кофакторы и коферменты либо формируют третичную структуры белка-фермента, что обеспечивает его специфичность к субстрату. Либо вовлекаются в реакцию в качестве дополнительного субстрата (в основном коферменты).

Механизм реакции фермента с субстратом:

1.Фермент связывается с субстратом в активном центре (у сложных белков в активном центре располагается кофактор).

2.В области активного центра происходит химическое превращение субстрата и, образуется продукт реакции.

3.Образовавшийся продукт реакции теряет комплементарность и отсоединяется от фермента.

Молекула каждого фермента имеет нужную для своего действия конформацию, только при определенных внешних условиях (РН, температура и т.д.).

Виды специфичности ферментов:

Субстратная специфичность:

1.Абсолютная- катализирует превращение только одного субстрата.

2.Групповая- катализирует однотипные превращения в нескольких структурно похожих субстратах.

3.Стереоспецифичность- при наличии у субстрата нескольких стереоизомеров, фермент проявляет абсолютную специфичность только к одному из них (D- сахара, L-аминокислоты, цис-транс-изомеры).

Каталитическая специфичность:

Катализ присоединенного субстрата по одному из возможных путей превращения. Одно и то же вещество может превращаться в разные продукты, по действием различных ферментов.

Каталитическая эффективность (число оборотов фермента)- количество молекул субстрата, превращенных в продукт с помощью одной молекулы фермента за 1 секунду.

Явление специфичности путей превращения- один и тот же субстрат может превращаться в разные вещества, под действием разных ферментов.

Скорость ферментативных реакций (V) измеряют по убыли субстрата (S) или приросту продукта (P) за единицу времени. Изменение скорости ферментативной реакции находится в прямой пропорциональной зависимости от изменения концентрации фермента при насыщающей концентрации субстрата.