Сравнение структурных особенностей про и эукариотических генов. Структура генов у прокариот и эукариот

Краткий обзор:

Структурными генами называются участки ДНК, кодирующие белковые цепи, т-РНК и р-РНК.

Большинство эукариотических генов имеет «мозаичную» экзон-интронную структуру.

Экзоны - участки гена, кодирующие структуру полипептида.

Интроны - участки гена, не кодирующие структуру полипептида. Их роль до конца не ясна, вероятно они участвуют в процессах генетической рекомбинации, а также в процессах регуляции экспрессии.

Количество интрон-экзонных переходов в пределах гена может варьироваться от 0 до 50. Колебание размеров более характерно для интронов - от 20 до более чем 10000 п.н.

Регуляторные элементы могут находиться за пределами сайта транскрипции и быть общими для нескольких генов:

Промоторы - участки присоединения РНК полимеразы

Энхансеры - усилители транскрипции

Сайленсеры - ослабители транскрипции

Инсуляторы - ограничители влияния соседних регуляторных элементов

Полный ответ:

Ген представляет собой последовательность нуклеотидов ДНК размером от нескольких сотен до миллиона пар нуклеотидов, в которых закодирована генетическая информация о первичной структуре белка (число и последовательность аминокислот). Гены являются элементарными дискретными единицами наследственности. Воспроизведение и действие генов непосредственно связано с матричными процессами. В настоящее время ген рассматривается как единица функционирования наследственного материала. Химической основой гена является молекула ДНК.

Гены разделяются на структурные, регуляторные и гены-модуляторы.

Структурные гены содержат информацию о структуре белка (полипептидов) и рибонуклеиновых кислот (рибосомальной и транспортной), при этом генетическая информация реализуется в процессе транскрипции и трансляции или только транскрипции.У человека насчитывается около 30 000 структурных генов, но только часть из них экспрессирована. Размеры генов варьируют от 250 п.н. до 2 200 ООО п.н.

Общепринятая модель строения гена - экзон-интронная структура:

Экзон -постедовательностъ ДНК. которая представлена в зрелой РНК. В составе гена должен присутствовать как минимум один экзон (гены тРНК, гистонов). Максимальное количество экзонов представлено в гене мышеч-ного белка титана - 364 экзона. В среднем в гене содержится 8 экзонов.

Фактор инициации транскрипции 5 -ACTT(T/C)TG-3" входит в состав первого экзона.

Фактор терминации транскрипции (менее определённая последовательность) входит в состав последнего экзона.

Интрон - последовательность ДНК. включённая между экзонамн. не входит в состав зрелой РНК. Интроны имеют определенные нуклеотидные последовательности, определяющие их границы с экзонамн: на 5"конце - GU последовательность, на 3"конце -AG. Интроны содержат регуляторные элементы экспрессии гена и могут кодировать регуляторные РНК (miRNA).

Сигнал полиаденилирования 5 -ААГААА-З" входит в состав последнего экзона, начинается сразу после стоп-кодона (ТАА, TAG, TGA). Поли(А) сайты защищают мРНК от деградации.

Копирование гена происходит в направлении 5" -> 3"; на флангах (границах) находятся специфические сайты, ограничивающие ген и содержащие регуляторные элементы его транскрипции.

Регуляторные элементы - промотор, энхансеры, сайленсеры, инсуляторы - могут находиться за пределами сайта транскрипции и быть общими для нескольких генов.

Промотор (от англ. promoter - активатор, ускоритель) - цис-регуляторная последовательность в 5 -области гена, определяющая место прикрепления РНК-полимеразы и интенсивность (частоту) транскрипции мРНК. Содержит ТАТА-бокс для связывания основного фактора транскрипции TEQD. Проксимальнее ТАТА-бокса содержатся GC бокс (5"-GGCiCGG-3") и СААГ бокс (З"-СС"ААТ-З’) для связывания дополнительных специфических белков, активирующих экспрессию генов. Активация только промотора не достаточна для экспрессии гена на физиологически значимом уровне.

Энхансеры (от англ. enhance-усиливать)-цис-позитизные регуляторные элементы и сайленсеры (от англ. silence - успокаивать) - цис-негативные регуляторные элементы состоят из 6-12 нуклеотидов, специфически взаимодействующих с белками. Энхансеры связываются с белками активаторами и усиливают экспрессию гена.

Сайленсеры связываются с белками репрессорами и блокируют экспрессию гена. Энхансеры и сайленсеры локализуются в 5"- или 3"-фланкируклцих участках, нитронах. Активность не зависит от их ориентации или локализации. Кроме того, они могут находиться на больших расстояниях от промотора (несколько сотен п.и.) и взаимодействуют с ним за счёт образования петель ДНК.

Инсуляторы (англ. MAR - matrix attachment regions). Образуют дискретные функциональные домены - петли хромосом, ограничивающие влияние соседних регуляторных элементов. В состав петли могут входить специфические последовательности, контролирующие локус (англ. LCR - locus-control region) - позитивные цис-элементы, регулирующие активность нескольких генов (рис. 1-2).

Благодаря экзонно – интронной организации генов создаются предпосылки для альтернативного сплайсинга. Альтернативний сплайсинг- процесс «вырезания» разных интронов из первичного РНК-транскрипта в результате чего на основе одного гена могут синтезироватся разные белки. Явление альтернативного сплайсинга имеет место у млекопитающих при синтезе различних антител на основе иммуноглобулиновых генов.

65. Классификация генов

Полный ответ:

По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра, ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями.

По функциональному значению различают:структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены - последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).

По влиянию на физиологические процессы в клетке различают: летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др.

Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены - супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов. Мутации в генах приводят к измененному синтезу белковых продуктов и нарушению биохимических или физиологических процессов.

Гомеозисные мутации у дрозофилы позволили открыть существование генов, нормальной функцией которых является выбор или поддержание определенного пути эмбрионального развития, по которому следуют клетки. Каждый путь развития характеризуется экспрессией определенного набора генов, действие которых приводит к появлению конечного результата: глаза, голова грудь, брюшко, крыло, ноги и т. д. Исследования генов комплекса bithorax дрозофилы американским генетиком Льюисом показали, что это гигантский кластер тесно сцепленных генов, функция которых необходима для нормальной сегментации груди (thorax) и брюшка (abdomen). Подобные гены получили название гомеобоксных. Гомеобоксные гены расположены в ДНК группами и проявляют свое действие строго последовательно. Такие гены обнаружены и у млекопитающих, и они имеют высокую гомологию (сходство).

66. Отличие в строении прокариот и эукариот.

Краткий ответ:

Полный ответ:

У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид). У эукариот есть оформленное ядро (ДНК отделена от цитоплазмы ядерной оболочкой).

Дополнительные отличия

1) Раз у прокариот нет ядра, то нет и митоза/мейоза. Прокариоты размножаются делением надвое.

2) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот кроме рибосом (крупных, 80S) имеется множество других органоидов: митохондрии, эндоплазматическая сеть, клеточный центр, и т.д.

3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

Сходства

Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы.

Транскрипция у эукариот

Определения: Ядрышко - место образования субъединиц рибосом, наблюдаемое в световой микроскоп. В ядре может быть несколько ядрышек. Мастер генов рРНК называют ядрышковым организатором. Базальные факторы транскрипции - белки, необходимые для инициации транскрипции. Энхансеры - последовательности ДНК, усиливающие транскрипцию при взаимодействии со специфическими белками. Сайленсеры – последовательности ДНК, ослабляющие транскрипцию при взаимодействии с белками.

У эукариот процессы транскрипции и трансляции разобщены во времени и пространстве (транскрипция - в ядре, трансляция - в цитоплазме). У эукариот существуют специализированные РНК-полимеразы. В ядре выделяют 3 типа РНК-полимераз: РНК-полимераза I - синтезирует rРНК (кроме 5SrРНК). РНК-полимераза II - синтезирует мРНК и некоторые sPHK. РНК-полимераза III - синтезирует тPHK, некоторые sPHK и 5SrPHK. РНК-полимеразы различаются количеством субьединиц, их аминокислотным составом, и зависимостью от катионов магния и марганца. Для РНК-полимераз I и III необходимое для работы соотношение / = 2. Для РНК-полимеразы II - / = 5. Наиболее яркое различие - чувствительность к α- аманитину (токсину бледной поганки). Он полностью подавляет работу РНК-полимеразы II в концентрации 10-8 М и РНК-полимеразы III (в концентрации 10-6 М). РНК-полимераза I фактически нечувствительна к этому токсину. Помимо ядерных РНК-полимераз у эукариот есть еще РНК-полимеразы хлоропластов и митохондрий. Они кодируются в ядре, а не в соответствующих органеллах. В органеллах образуются свои тPHK, рРНК и рибосомные белки.

Как образуются рибосомы у эукариот Гены rРНК присутствуют в количестве от 10 до 105 копий у разных видов (105 у амфибий). У человека - 300 генов, в которых закодированы rРНК.Все рибосомные гены, кроме генов 5S рибосомной РНК, сближены (т.е располагаются один за другим) и образуют несколько кластеров. Сначала синтезируется про-рРНК, после созревания которой образуются 28S, 18S и 5,8SrРНК.Интерфазные хромосомы в световой микроскоп не видны. Каждый ген прорибосомной РНК транскрибируется одновременно несколькими РНК-нолимеразами и тут же начинается процессинг.На электронномикроскопических фотографиях видна картина "рождественской елочки". Синтезируемые в ядре мРНК поступают на готовые рибосомы в цитоплазму, где синтезируются рибосомные белки, которые идут в ядро и путаются в "ветвях елки".Образуются рибосомные субъединицы. Одновременно в эукариотическом ядре находятся сотни тысяч субъединиц рибосом.

Особенности транскрипции эукариот. Единицей транскрипции у эукариот является отдельный ген, а не оперон, как у прокариот.Оператор, как таковой, отсутствует. Промотор есть, но он организован иначе.На расстоянии -25 п.н. от +1 нукл. находится ТАТА-бокс. Его позиция определяет точку инициации транскрипции. А на расстоянии -60-80 п.н. находится ЦААТ-бокс, который не является абсолютно необходимым, но присутствует перед большинством генов.Расстояние между ЦААТ и ТАТА большое и РНК-полимераза не способна накрыть всю эту область.ЦААТ опознается своим белком, а ТАТА - своим.Помимо этих есть еще несколько белков, называемых базальными факторами транскрипции.Базальные факторы транскрипции необходимы для инициации транскрипции всеми тремя ядерными РНК-полимеразами.Для любого гена, кодирующего белок, есть энхансеры (усилители). Энхансеры - это не непрерывные последовательности нуклеотидов. Существуют так называемые модули - это отдельные части энхансеров. Одинаковые модули могут встречаться в разных энхансерах. Для каждого энхансера набор модулей уникален. Модули - это короткие последовательности, не более 2-х витков спирали (20 п.н.), которые могут находиться перед, за и даже внутри гена. Таким образом, М1+М2+МЗ+М4 - один энхансер, но он состоит из 4-х модулей. Все 4 модуля узнаются своими белками, а они, сидя на ДНК, взаимодействуют друг с другом. Если в клетке присутствуют все соответствующие белки, то участку ДНК придается определенная конформация и начинается синтез мPHK. Все соматические клетки многоклеточного эукариотического организма имеют абсолютно одинаковый набор генов. Почему же клетки дифференцированы и специализированы? Дело в том, что все гены работают на фоновом уровне и не имеют фенотипического проявления. Экспрессируются лишь те гены, у которых все энхансерные модули узнаны своими белками и эти белки взаимодействуют друг с другом. Кроме энхансеров есть сайленсеры (ослабители). При соответствующем наборе белков экспрессия отдельных генов в клетке может быть пода

Механизм созревания мРНК

Краткий обзор: Матричная рибонуклеиновая кислота (мРНК, синоним - информационная РНК , иРНК) - РНК, содержащая информацию о первичной структуре (аминокислотной последовательности) белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов.

Транскрипция (от лат. transcriptio - переписывание) - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Экспрессия генов - это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт - РНК или белок. Некоторые этапы экспрессии генов могут регулироваться: это транскрипция, трансляция, сплайсинг РНК и стадия посттрансляционных модификаций белков.

Сплайсинг - это процесс, в котором из пре-мРНК удаляются участки, не кодирующие белок, называемые интронами; последовательности, которые остаются, несут информацию о структуре белка и называются экзонами. Иногда продукты сплайсинга пре-мРНК могут быть соединены разными способами, позволяя одному гену кодировать несколько белков. Этот процесс называется альтернативным сплайсингом.

Схема сплайсинга

Трансляяция - процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой.

Основная часть: Жизненный цикл молекулы мРНК начинается её «считыванием» с матрицы ДНК (транскрипция) и завершается её деградацией до отдельных нуклеотидов. Молекула мРНК в течение своей жизни может подвергаются различным модификациям перед синтезом белка (трансляцией). Эукариотические молекулы мРНК часто требуют сложной обработки и транспортировки из ядра - места синтеза мРНК, на рибосомы, где происходит трансляция, в то время как прокариотические молекулы мРНК этого не требуют и синтез РНК у них сопряжён с синтезом белка.

Транскрипция осуществляется ферментом РНК-полимеразой, строящей, согласно принципу комплементарности, копию участка ДНК на основании одной из цепей двойной спирали. Этот процесс как у эукариот, так и у прокариот организован одинаково. Основное различие между про- и эукариотами состоит в том, что у эукариот РНК-полимераза во время транскрипции ассоциируется с мРНК-обрабатывающими ферментами, поэтому у них обработка мРНК и транскрипция могут проходить одновременно. Короткоживущие необработанные или частично обработанные продукты транскрипции называются пре-мРНК; после полной обработки - зрелая мРНК.

Созревание мРНК. Эукариотические пре-мРНК подвергаются интенсивным модификациям. Так, одновременно с транскрипцией происходит добавление на 5"-конец молекулы РНК специального модифицированного нуклеотида (кэпа), удаление определённых участков РНК (сплайсинг), а также добавление на 3"-конец адениновых нуклеотидов (так называемый полиадениновый, или поли(А)-, хвост). Обычно эти посттранскрипционные изменения мРНК эукариот обозначают термином «процессинг мРНК».

Кэпирование является первым этапом процессинга мРНК. Оно осуществляется, когда синтезируемый транскрипт достигает длины 25-30 нуклеотидов. Сразу после присоединения кэпа к 5"-концу транскрипта с ним связывается кэп-связывающий комплекс CBC (англ. cap binding complex), который остаётся связанным с мРНК до завершения процессинга и важен для всех последующих его этапов. В процессе сплайсинга из пре-мРНК удаляются не кодирующие белок последовательности - интроны. Полиаденилирование необходимо для транспорта большинства мРНК в цитоплазму и защищает молекулы мРНК от быстрой деградации (увеличивает время их полужизни). Лишённые поли(А)-участка молекулы мРНК (например, вирусные) быстро разрушаются в цитоплазме клеток эукариот рибонуклеазами.

После завершения всех стадий процессинга мРНК проходит проверку на отсутствие преждевременных стоп-кодонов, после чего она становится полноценной матрицей для трансляции. В цитоплазме кэп узнаётся факторами инициации, белками, отвечающими за присоединение к мРНК рибосомы, полиадениновый хвост связывается со специальным поли(А)-связывающим белком PABP1.

Определение тонкой структуры гена, т.е. его организации, а также принципы работы, т.е. регуляции активности (включение-выключение), первоначально были установлены для прокариотических клеток.

Эти работы выполнили Франсуа Жакоб и Жак Моно (1961; Нобелевская премия 1965). Согласно концепции Жакоба–Моно, единицей регуляции активности генов у прокариот является оперон. Оперон — функциональная единица генома у прокариот, в состав которой входят цистроны (единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами, т.е. размеры оперона превышают размеры кодирующих последовательностей ДНК. Такая функциональная организация позволяет эффективнее регулировать экспрессию (проявление) этих генов.

В целом структура оперона включает: промотор, оператор, структурные гены, терминатор (рис.1).

П — Промотор – это регуляторный участок ДНК, который служит для присоединения РНК-полимеразы к молекуле ДНК.

С- Оператор – это регуляторный участок ДНК, который способен присоединять белок-репрессор, который кодируется соответствующим геном. Если репрессор присоединен к оператору, то РНК-полимераза не может двигаться вдоль молекулы ДНК и синтезировать мРНК.

Т- Терминатор – это регуляторный участок ДНК, который служит для отсоединения РНК-полимеразы после окончания синтеза мРНК.

Транскрипция группы структурных генов, регулируется двумя элементами – геном-регулятором и оператором. Оператор часто локализуется между промотором и структурными генами; ген-регулятор может локализоваться рядом с опероном или на некотором расстоянии от него.

Если продуктом гена-регулятора является белок-репрессор, его присоединение к оператору блокирует транскрипцию структурных генов, препятствуя присоединению РНК-полимеразы к специфичному участку – промотору, необходимому для инициации транскрипции. Напротив, если белком-регулятором служит активный апоиндуктор, его присоединение к оператору создает условия для инициации транскрипции. В регуляции работы оперонов участвуют также низкомолекулярные вещества – эффекторы, выступающие как индукторы либо корепрессоры структурных генов, входящих в состав оперонов.

Опероны по количеству цистронов делят на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

Объединение функционально близких генов в опероны, видимо, постепенно сложилось в эволюции бактерий по той причине, что у них перенос генетической информации обычно осуществляется небольшими порциями (например, при трансдукции или посредством плазмид). Значение имеет само по себе сцепление функционально родственных генов, что позволяет бактериям приобретать необходимую функцию в один этап.

Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную ДНК, не входящую в геном организма, которая определяет их признаки.

Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Йогансеном.

Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передаче по наследству признаков при скрещивании гороха. Сформулированные им закономерности впоследствии назвали Законами Менделя.

Среди учёных нет единого мнения под каким углом рассматривать ген. Одни учёные его рассматривают как информационную наследственную единицу, а единицей естественного отбора является вид, группа, популяция или отдельный индивид. Другие учёные, как например Ричард Докинз в своей книге «Эгоистичный ген», рассматривают ген как единицу естественного отбора, а сам организм - как машину для выживания генов.

В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК, несущие какую-либо целостную информацию - о строении одной молекулыбелка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

В то же время, каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК (англ.)русск., таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis cis-regulatoryelements ), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans -регуляторные элементы, англ. trans-regulatoryelements ). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Изначально термин ген появился как теоретическая единица передачи дискретной наследственной информации. История биологии помнит споры о том, какие молекулы могут являться носителями наследственной информации. Большинство исследователей считали, что такими носителями могут быть только белки, так как их строение (20 аминокислот) позволяет создать больше вариантов, чем строение ДНК, которое составлено всего из четырёх видов нуклеотидов. Позже было экспериментально доказано, что именно ДНК включает в себя наследственную информацию, что было выражено в виде центральной догмы молекулярной биологии.

Гены могут подвергаться мутациям - случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий (англ. copynumbervariations ), такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу, по имени которой и получила название сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Гены и мемы

По аналогии с генами Ричардом Докинзом был введён в употребление термин «мем» - единица культурной информации. Если ген распространяется в химической среде, используя для размножения химические вещества, то мем распространяется в информационной среде: на носителях информации, в человеческой памяти, а также в сети. Также как гены конкурируют между собой за ресурсы: химические вещества, так и мемы конкурируют за информационное пространство. По целому ряду причин, между пространственным распределением генов и мемов могут наблюдаться достаточно жёсткие корреляции.

Свойства гена

2. дискретность - несмешиваемость генов;

3. стабильность - способность сохранять структуру;

4. лабильность - способность многократно мутировать;

5. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

6. аллельность - в генотипе диплоидных организмов только две формы гена;

7. специфичность - каждый ген кодирует свой признак;

8. плейотропия - множественный эффект гена;

9. экспрессивность - степень выраженности гена в признаке;

10. пенетрантность - частота проявления гена в фенотипе;

11. амплификация - увеличение количества копий гена.

Классификация

В зависимости от выполняемых функций гены делятся на

1.Структурные гены – гены, контролирующие синтез структурных белков или ферментов

2. Регуляторные гены – гены, контролирующие синтез различных белков, влияющих на активность структурных генов. Регуляторные гены в свою очередь делятся на:

Гены – модификаторы – усиливающие и снижающие активность структурных генов.

Гены – супрессоры – подавляющие активность структурных генов

По влиянию на жизнеспособность организмов гены делятся на:

1 Летальные гены – гены, приводящие к гибели их носителей

Вопрос 71.Структура гена у прокариот. Оперон.

Сублитальные гены – гены, приводящие к нарушению репродуктивной функции (стерильность, пониженная жизнеспособность или нежизнеспособность потомства) их носителей

3. Нейтральные гены – не влияющие на жизнеспособность организма.

Строение структурных генов прокариот и эукариот специфичное. У прокариот в большинстве случаев кодирующий участок непрерывен, в генах эукариот наряду с участками, кодирующими специфический для этого гена продукт (полипептид, рибосомную РНК, транспортную РНК), имеются некодирующие участки. Кодирующие участки гена получили, как уже упоминалось, название экзонов, некодирующие - интронов. В структурном гене экзоны чередуются с интронами. Ген как бы разорван.
Число и внутригенная локализация интронов характерны для каждого гена. Размеры интронов различные (от нескольких десятков до нескольких тысяч нуклеотидных пар). Нередко на долю интронов в гене приходится больше нуклеотидов, чем на долю экзонов. Роль интронов мало изучена. Если бы они не выполняли определенных функций, были не нужны организму, элиминировались бы естественным отбором.
Изучение гена продолжается. Современные сведения позволяют говорить о гене как об участке молекулы геномной нуклеиновой кислоты, представляющем единицу функции и способном изменяться и приобретать различные состояния путем мутирования и рекомбинаций. Это сложная, но в функциональном отношении целостная единица наследственности.

Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами).

Генетический аппарат клеток эукариот.

Генетический аппарат клетки.

  • геном – генетический материал ядра в гаплоидном наборе хромосом;

Функциональная единица – ген.

  • Плазмон – генетический материал цитоплазмы;

Функциональная единица – плазмоген.

1962 год – Д. Гердон – лягушки, опыт, стоял у истоков клонирования животных.

Роль хромосом в наследственности:

  • 1882 – Флемин описал поведение хромосом во время митоза;
  • 1902 – Теодор Бовери, Вальтер Сеттон предположили, что гены находятся в хромосомах;
  • 1909 – Томас Морган, Карл Бриджес, Альфред Стертевант экспериментально доказали связь наследственного материала с хромосомами.

Хромосомная теория наследственности.

1. Каждая хромосома представляет уникальную группу сцепления генов. Число групп сцепления равно гаплоидному набору хромосом.

2. Гены в хромосоме располагаются в линейном порядке и занимают определенное место – локус.

3. М-ду гомологичными хромосомами возможен обмен аллельными генами – кроссинговер , который нарушает сцепление генов и обеспечивает перекомбинацию генов

4. Частота кроссинговера является функцией расстояния между генами:

чем больше расстояние между генами, тем больше вероятность кроссинговера.

5. Частота кроссинговера зависит от силы сцепления м-ду генами:

чем сильнее сцеплены гены, тем меньше вероятность кроссинговера (полное и неполное сцепление).

Карл Эрих Корренс (1908) – опыты с «ночной красавицей», у которой описано явление пестролистности. Неравномерность окраски листьев объясняется неравномерным распределением хлоропластов во время деления.

Борис Эфрусси открыл метохондриальную наследственность у млекопитающих в 1949.

В 1981 была секвенирована митахондриальная ДНК человека (определена точная нуклеотидная последовательность)

ДНК митохондрий.

  • Кольцевая двуспиральная;
  • Содержит 37 генов:

кодируют 13 белков, 22 молекулы т-РНК, 2 молекулы р-РНК;

  • Гены не содержат интронов;
  • Признаки наследуются по материнской линии и не являются менделирующими.

Объем митохондриального генома в 200 тысяч раз меньше ядерного.

  • Реплицируется независимо от ядерной ДНК.
  • Постоянство присутствия в клетке,
  • способность к самоудвоению,
  • равномерное распределение генетической информации м-ду дочерними клетками во время деления.

Химический состав хромосом.

  • Гистоновые белки – Н1, Н2а, Н2в, Н3, Н4 обладают основными свойствами
  • Негистоновые белки обладают кислыми свойствами
  • Липиды (фосфолипиды, свободные жк, хс и тг)
  • Полисахариды
  • Ионы металлов

Деспирализованная форма существования хромосом в неделящемся ядре называется хроматина.

Дезоксирибонуклепротеиновый комплекс (ДНП).

Степень компактизации хроматина изменяется в течении метотического цикла клетки и определяет генетическую активность или неактивность хромосом.

Чем выше степень компактизации, тем меньше генетическая активность.

Уровни компактизации:

1. Нуклеосомный:

Может быть получен только искусственным путем.

Хроматиновая фибрилла выглядит в виде ниточки бус.

Гистоновые белки 4х классов (H2a, H2b, H3 и Н4) образуют гистоновые актамеры.

На гистоновые актамеры накручивается молекула ДНК, делая 1,75 оборота.

Есть свободный линкерный участок.

В таком состоянии молекула ДНК укорачивается в6-7 раз.

Диаметр фибриллы 10 нм.

Характерен дляG1 периода интерфазы.

2. Нуклеомерный .

Хроматиновая фибрилла приобретает структуру соленоида за счет соединения соседних нуклеусов за счет встраивания белка Н1 в линкерную область.

Диаметр фибриллы 30 нм.

Коэффициент компактизации – 40 раз.

Характерен для G2 периода интерфазы.

3. Хромомерный.

Компактизация происходит при участии негистоновых белков с образованием петель.

2. Понятие о гене. Структурная организация генов прокариот и эукариот. Классификация генов.

Характерен для начала профазы митоза.

Диаметр фибриллы 300 нм.

Коэффициент компактизации 200-400 раз.

4. Хромонемный .

Петли укладываются в стопки.

Коэффициент компактизации – 1000 раз.

Диаметр фибриллы 700 нм.

Характерен для конца профазы митоза.

5. Хромосомный.

Достигается максимальная степень спирализации хроматина.

диаметр фибриллы 1400 нм.

Коэффициент компактизации 104-105.

Характерен для метафазы митоза.

Строение метафазной хромосомы.

Состоит из 2х хроматид, соединенных первичной перетяжкой или центромерой. В области центромеры находится кинетохор – участок, к которому прикрепляются нити веретена деления. Первичная перетяжка определяет форму хромосомы, деля её на 2 плеча: р – короткое плечо, q – длинное.

По форме:

  • Метацентрические p=q
  • Субметацентрические p
  • Акроцентрические p<

Для точной идентификации хромосом используют центромерный индекс: отношение длины короткого плеча к длине всей хромосомы.

Ещё есть спутники (в акроцентрических у человека), соединенные вторичной перетяжкой.

Во вторичной перетяжке находятся гены, отвечающие за синтез рибосомальных рнк.

Теломеры – концевые участки хромосом.

Роль теломер:

  • Механическая функция (прикрепляются к оболочке ядра), предотвращают слипание хромосом м-ду собой, что может привести к образованию дицентриков.
  • Стабилизационная – защищает хромосомы от деградации клеточными нуклеазами (ферменты, которые разрушают)
  • Влияют на экспрессию генов – активность генов, расположенных рядом с теломерами снижена
  • Регулируют кол-во клеточных делений в отсутствие теломеразы.

Разновидности хроматина:

1. Эухроматин — слабо компактизованные, генетически активен, реплицируется в начале интерфазы, преобладают аденин, тимин, содержит все структурные гены

1 и 2 уровень компактизации

2. Гетерохроматин – сильно компактизованные, генетически неактивен, реплицируется позже хроматина, гуанин цитозин преобладают, входят другие классы генов. Потеря участков не влияет.

3 и 4 уровень компактизации.

  • Постоянный: расположен в теломерных участках хромосом и расположен в области центромеры, функции: регулирует работу структурных генов, участвует в образовании синаптического комплекса м-ду гомологичными хромосомами во время мейоза.
  • Факультативный: временно переведенный в неактивное состояние эухроматин, примером его является половой хроматин.

Половой хроматин.

1949 М. Барр и Л. Бертрам обнаружили половой хроматин в интерфазных ядрах нейронов кошек.

В норме число глыбок полового хроматина на 1 меньше чем число Х-половых хромосом.

Женская зигота млекопитающих имеет две функционально активные Х-хромосомы

На 16й день эмбриогенеза происходит инактивация одной х-хромосомы во всех соматических клетках эмбриона. Процесс инактивации носит случайный характер.

Значение полового хроматина.

Тест, Только в соматических клетках! Для определения пола плода! Для диагностики хромосомных заболеваний, связанных с изменением числа половых хромосом.

В большом спорте как секс-контроль.

Кариотип – хромосомный комплекс соматических клеток определенного вида растений и животных

Показатели:

  • число,
  • формы и
  • размеры от 0,1 до 10 мкм хромосом.

1956 – Ю. Тио и А. Леван изучили кариотип человека.

Правила хромосом.

  • Видовое постоянство числа хромосом;
  • Парности хромосом;
  • Индивидуальность хромосом;
  • Непрерывность хромосом – способны к самоудвоению (хромосома происходит от хромосомы);

В кариотипе выделяют аутосомы (одинаковые для обоих полов) и половые хромосомы. Или 22 пары.

Метод изучения кариотипа – кариологический анализ – лежит в основе цитогенетического метода.

Суть – изучение препаратов метафазных хромосом.

№5

Ген – это фрагмент молекулы ДНК, содержащий регуляторные элементы и структурную область, и соответствующий одной единице транскрипции, которая определяет возможность синтеза полипептидной цепи или молекулы РНК.

Ген прокариот называется опероном, в его состав входят два основных участка:

  • регуляторный (неинформативный),
  • структурный (информативный).

У прокариот на долю регуляторных элементов приходится около 10 %, структурных – 90 %.

Структурная область генов прокариот (единица транскрипции) может быть представлена одним кодирующим участком, который называется цистроном, либо несколькими кодирующими участками (полицистронная единица транскрипции).

В структурной зоне закодирована информация о последовательности аминокислот в виде генетического кода. Со структурной области считывается мРНК. При наличии у прокариот полицистронной единицы транскрипции на одном структурном участке одновременно может синтезироваться несколько разновидностей мРНК.

К регуляторным элементам генов прокариот относятся участки, управляющие работой гена:

  • промотор,
  • оператор,
  • терминатор.

Промотор определяет начало транскрипции (участок инициации). С промотором соединяется фермент РНК-полимераза, осуществляющий синтез мРНК.

СТРОЕНИЕ ГЕНА ПРО- И ЭУКАРИОТ

Другой элемент, управляющий процессом транскрипции, – оператор, который располагается поблизости от промотора или внутри него. Этот участок может быть свободным, тогда РНК-полимераза соединяется с промотором и начинается транскрипция. Если оператор связан с белком-репрессором, РНК-полимераза не может нормально соединиться с промотором, и транскрипция невозможна. Следующий регуляторный элемент – терминатор – находится за структурной областью и содержит сигнальный участок остановки транскрипции.

Механизм функционирования системы регуляции синтеза белка был открыт в 1962 году Жакобом и Моно при исследовании культивирования кишечной палочки в лактозной среде и назван lac-опероном.

Упрощенно этот механизм может быть описан следующим образом. На основе информации гена-регулятора синтезируется белок-репрессор; если он активный, он связывается с геном-оператором, перекрывая путь для РНК-полимеразы – процесс трансляции и последующего синтеза белка выключается (запрещается). Если появляется индуктор (например, лактоза в lac-опероне), он присоединяется с белку-репрессору, приводя его в неактивное состояние. Оператор становится активным и включает процесс считывания информации со структурных генов – разрешает трансляцию. Происходит считывание информации с ДНК, начинается синтез необходимого белка – фермента (например, β-галактозидазы в lac-опероне).

Это только один из возможных механизмов, который называется запрещающей индукцией. Существуют и другие механизмы регуляции синтеза белка: разрешающая индукция, разрешающая и запрещающая репрессия, в которых принимают участие апоиндукторы и корепрессоры.

Строение генов у эукариот намного сложнее. Генетическая система эукариот называется транскриптоном. Транскриптон также состоит из двух частей:

  • регуляторной (неинформативной),
  • структурной (информативной),

относительная пропорция которых противоположна генам прокариот: на долю регуляторного участка приходится 90 %, структурного – 10 %.

Регуляторный участок представляет собой ряд последовательно расположенных промоторов и операторов и несколько терминаторов. Структурный участок состоит из одной единицы транскрипции и имеет “прерывистое” строение: кодирующие участки (экзоны) чередуются с некодирующими (интронами). Одномоментно на структурном участке у эукариот может синтезироваться только одна молекула мРНК, однако благодаря наличию альтернативного сплайсинга в разнос время (в зависимости от потребности клетки) на одной и той же структурной части могут синтезироваться разные виды мРНК (от одной до нескольких десятков).

Социальные кнопки для Joomla

Геном - совокупность всех генов гаплоидного набора хромосом данного вида организма.
Спирализация ДНК в «хромосоме» прокариот значительно меньше, чем у эукариот.
Геном эукариот:
большое число генов,
большее количество ДНК,
в хромосомах имеется очень сложная система контроля активности генов во времени и пространстве, связанная с дифференциацией клеток и тканей в онтогенезе организма.
Количество ДНК в хромосомах велико и возрастает по мере усложнения организмов. Для эукариот также характерна избыточность генов. Больше половины гаплоидного набора генома эукариотов составляют уникальные гены, представленные лишь по одному разу. У человека таких уникальных генов - 64%.
Т.о. в течение последних 10 лет сформировалось представление, что в состав генома про- и эукариот входят гены:
1) имеющие либо стабильную, либо нестабильную локализацию;
2) уникальная последовательность нуклеотидов представлена в геноме единичными или малым числом копий: к ним относятся структурные и регуляторные гены; уникальные последовательности эукариот, в отличии от генов прокариот, имеют мозаичное строение;
3) многократно повторяющиеся последовательности нуклеотидов являются копиями (повторениями) уникальных последовательностей (у прокариот нет). Копии группируются по несколько десятков или сотен и образуют блоки, локализующиеся в определенном месте хромосомы. Повторы реплицируются, но, как правило, не транскрибируются. Они могут играть роль:
1) регуляторов генной активности;
2) защитного механизма от точковых мутаций;
3) хранение и передача наследственной информации;

Цистрон - наименьшая единица генетической экспрессии. Некоторые ферменты и белки состоят из нескольких неидентичных субъединиц. Таким образом, известная формула «один ген - один фермент» не является абсолютно строгой. Цистрон - это минимальная экспрессируемая генетическая единица, кодирующая одну субъединицу белковой молекулы. Поэтому вышеупомянутую формулу можно перефразировать как «один цистрон - одна субъединица".

Строение мозаичного гена
В конце 70-х годов было выяснено, что у эукариот имеются гены, которые содержат «лишнюю» ДНК, не представленную в молекуле мРНК. Они получили название мозаичных, прерывистых генов; генов, имеющих экзон-интронное строение.
1.Мозаичные гены эукариот имеют больший размер, чем последовательность нуклеотидов, представленная в мРНК (3-5%).
2.Мозаичные гены состоят из экзонов и интронов. Интроны удаляются из первичного транскрипта и отсутствуют в зрелой мРНК, которая состоит только из экзонов. Число и размеры интронов и экзонов индивидуальны для каждого гена, но интроны по размерам значительно больше экзонов.
3.Ген начинается экзоном и заканчивается экзоном, но внутри гена может быть любой набор интронов (гены глобина имеют 3 экзона и 2 интрона) (рис. 20). Экзоны и интроны обозначаются цифрами или буквами в порядке их расположения вдоль гена.).
4. Порядок расположения экзонов в гене совпадает с их расположением в мРНК.
5.На границе экзон-интрон имеется определённая постоянная последовательность нуклеотидов (ГТ - АГ), присутствующая во всех мозаичных генах.
6. Экзон одного гена может быть интроном другого.
7. В мозаичном гене иногда нет однозначного соответствия между геном и кодируемым им белком, то есть одна и та же последовательность ДНК может принимать участие в синтезе различных вариантов белка.
8. Один и тот же транскрипт (про-мРНК) может подвергаться разному сплайсированию, в результате этого сплайсированные участки мРНК могут кодировать разные варианты одного белка.
9. Особенности строения мозаичного гена позволяют осуществлять альтернативный сплайсинг (экзон L - экзон 2,3 или экзон S - экзон 2,3): синтезировать несколько вариантов белка на основе информации одного гена; создавать удачные комбинации белков, а если таковые неудачны, то производить отбор на уровне мРНК при сохранении неизменной ДНК (рис. 21).
В этом проявляется принцип экономного использования генетической информации, т.к. у млекопитающих в процессе транскрипции участвуют приблизительно 5-10% генов.

Геном эукариот устроен намного сложнее, чем у прокариот. Генетический аппарат эукариотической клетки обособлен в виде клеточного ядра, внутри которого располагаются основные носители наследственности — хромосомы. Количество хромосом видоспецифично и колеблется от двух (лошадиная аскарида) до тысячи (низшие растения). Количество ДНК в клетках эукариот намного выше, чем у бактерий. Оно оценивается с помощью величины С — количества ДНК на гаплоидное число хромосом, т.е. на геном. Оно колеблется у разных видов от 10 4 до 10 11 и часто не коррелирует с уровнем организации вида. Самые большие значения величины С, превышающие содержание ДНК в геноме человека, характерны для некоторых рыб, хвостатых амфибий, лилейных.

Одной из особенностей генома эукариот является структурная и функциональная связь ДНК с белками . Она обусловлена особенностями процесса передачи генетической информации и регуляторной функцией белков. Информация передается от клетки к клетке в процессе сложного процесса клеточного деления (митоза или мейоза). Для полного и точного распределения ее между дочерними клетками в интерфазе происходит процесс удвоения количества ДНК, а в начале деления (профазе) — процесс конденсации интерфазных хромосом. В итоге хромосомы приобретают вид компактных плотных тел. Компактизация хромосом исключает риск их запутывания во время расхождения к разным полюсам в анафазе. В этих структурных преобразованиях хромосом участвуют ядерные белки — гистоны, которые осуществляют суперспирализацию ДНК. Гистоны выступают также в качестве регуляторов матричной активности интерфазных хромосом, т.к. связь гистона с функционирующим участком хромосомы переводит его в гетерохроматическое, т.е. сильно спирализованное и, следовательно, неактивное состояние.

Присутствие в составе эукариотических хромосом белков, количество которых удваивается синхронно с удвоением ДНК, делает процесс репликации хромосом более длительным.

Характерной особенностью генома эукариот является избыточность ДНК , количество которой намного превышает то, которое необходимо для кодирования структуры всех клеточных белков. Одной из причин избыточности является наличие повторяющихся последовательностей нуклеотидов. Их существование впервые было установлено в конце 60-х гг. ХХ в. американскими исследователями Р. Бриттеном и Д. Девидсоном при изучении кинетики ренатурации ДНК (воссоединения одиночных цепей). В настоящее время установлено, что в составе эукариотической ДНК присутствуют два типа повторов — умеренноповторяющиеся п.н. и высокоповторяющиеся п.н. Умеренные повторы встречаются в виде десятков и сотен копий; средний размер их составляет ≈ 300-400 п.н. Они могут быть прямыми и инвертированными (палиндромы). Между повторами располагаются неповторяющиеся участки ДНК. Высокоповторяющиеся п.н. представляют собой короткие фрагменты ДНК (десятки п.н.), которые представлены большим количеством копий (до 106). В ряде случаев состав оснований в этих повторах отличается от такового в геноме в целом, в результате чего повторы могут образовывать отдельную фракцию с определенной плавучей плотностью. Эта фракция называется сателлитной ДНК. Она никогда не транскрибируется, в связи с чем ее называют также “молчащей”. Установлено, что сателлитная ДНК локализована в гетерохроматических районах хромосом: в теломерах, около центромеры, в ядрышке. Считается, что она выполняет регуляторную функцию, обеспечивая структурные преобразования хромосом во время процесса передачи генетической информации от клетки к клетке.

Избыточность ДНК в геноме эукариот в значительной мере создается также за счет того, что в его составе много нуклеотидных последовательностей, которые не кодируют структуру белков. Некоторые из них входят в состав генов, как например, интроны — вставки. Кроме того, есть так называемые сигнальные последовательности, которые не транскрибируются, а служат лишь для связывания белков-регуляторов. К их числу относятся промоторы, участки, контролирующие спирализацию хромосом; участки прикрепления хромосом к веретену и др.

Лишь немногие гены присутствуют в эукариотическом геноме в единственной копии. Основная их масса представлена разным числом копий. Расположенные рядом идентичные гены образуют кластеры . Существование кластеров говорит о большой роли дупликаций генов в эволюции геномов. Пример кластеров: гены белков эритроцитов — глобинов. Гемоглобин является тетрамером, состоящим из 4-х полипептидных цепей: 2α и 2β. Каждый тип цепей кодируется генами, организованными в кластер. У человека α-кластер располагается в 11-й хромосоме, а β-кластер — в 16-й хромосоме. β-кластер занимает участок ДНК в 50 тыс. п.н. и включает в себя пять функционально активных генов и один псевдоген. Псевдогены — это нефункционирующие, реликтовые гены, произошедшие в результате мутационных изменений от некогда активных генов. Они не экспрессируются. Гены в составе кластера отделены друг от друга спейсерами — нетранскрибируемыми вставками, в которых иногда могут присутствовать регуляторные участки.

Основным отличием эукариотических генов от генов прокариот является то, что большинство из них имеют прерывистую структуру и состоят из кодирующих участков — экзонов и некодирующих вставок — интронов . Длина экзонов от 100 до 600 п.н., а интронов — от нескольких десятков до многих тысяч п.н. Интроны могут составлять до 75% от длины гена. Прерывистая структура генов создает основу для более тонкого контроля их работы.

В результате транскрипции прерывистых генов образуется первичный продукт — про-иРНК, которая является полной копией гена и содержит в себе участки, соответствующие как экзонам, так и интронам. В процессе транскрипции участвуют три разных типа РНК-полимераз, которые считывают разные гены. РНКП-I считывает гены, кодирующие структуру разных форм рРНК (5,8S, 18S, 28S). РНКП-II ведет транскрипцию генов, кодирующих структуру белков и некоторых мяРНК. И, наконец, РНКП-III считывает гены 5S рРНК, транспортных РНК и мяРНК. В инициации процесса транскрипции принимает участие белковый комплекс, состоящий из различного числа белковых факторов транскрипции. У млекопитающих в его состав входят 12-14 полипептидов с общей массой в 600 кДА. В регуляции интенсивности транскрипции принимают участие специфические регуляторные участки — энхансеры и сайленсеры . Первые усиливают, вторые ослабляют процесс транскрипции. Они могут быть удалены от промотора на тысячи п.н. Под их контролем синтезируются регуляторные белки. В процессе транскрипции промотор и энхансер (или сайленсер) сближаются за счет структурных изменений ДНК, и регуляторные белки взаимодействуют с факторами транскрипции или с РНК-полимеразой.

Для того, чтобы про-иРНК могла играть роль матрицы для синтеза белка, она должна пройти период созревания (процессинг). Главное событие этого периода — удаление из про-иРНК участков, соответствующих интронам, и соединение в единую цепочку оставшихся экзонов. Процесс “сшивания” экзонов называется сплайсингом . В осуществлении сплайсинга большая роль принадлежит малым ядерным РНК (мяРНК) и белкам. Процесс протекает аналогично у всех эукариот. Молекулы мяРНК комплементарно взаимодействуют как с про-иРНК, так и друг с другом. Они обеспечивают удаление интронов и удерживают экзоны вблизи друг от друга.

Процесс сплайсинга может носить альтернативный характер, т.е. сшивание экзонов может осуществляться в разных комбинациях. Многие гены содержат десяток и более экзонов, поэтому число вариантов зрелой иРНК = 2 n , где n — число экзонов. Альтернативный сплайсинг делает систему записи информации экономичной, так как с одного гена можно считывать информацию для синтеза разных белков. Кроме того, он создает возможность регулирования потока информации в зависимости от потребности клетки в том или ином белковом продукте. Альтернативный сплайсинг, в частности, используется при синтезе иммуноглобулинов, факторов транскрипции и других белков.

Полное созревание иРНК включает модификацию обоих ее концов: навешивание кэп-структуры с 5"-конца и присоединение полиадениловой цепочки с 3"-конца. Кэп-структура образуется за счет присоединения к концевому основанию иРНК 5"-конца гуанинового нуклеотида.

Механизм трансляции у эукариот принципиально не отличается от прокариотического. Однако в обслуживании этого этапа синтеза белка принимает участие значительно большее количество белковых факторов трансляции, чем у бактерий.

При характеристике структуры генома эукариот нельзя не сказать о специализированных концевых участках хромосом — теломерах. Теломерная ДНК состоит из многократно повторяющихся коротких блоков нуклеотидов. Впервые теломерная ДНК была изучена у одноклеточных простейших.

В ее состав входят блоки по 6-8 пар нуклеотидов. В одной цепи — это блок TTGGGG (G-богатая цепь), в другой — AACCCC (C-богатая цепь). У человека эта последовательность отличается одним основанием TTAGGG, у растений имеется универсальный блок TTTAGGG. Протяженность теломерной ДНК у человека колеблется от 2 до 20 тыс. п.н. Теломерная ДНК никогда не транскрибируется и входит в состав сателлитной ДНК. С теломерными районами хромосом взаимодействует фермент теломераза, который устраняет возникающие в них повреждения. С укорочением теломер в результате потери концевых участков, вызванной снижением активности этого фермента, связывают процесс старения клеток.

Существенным отличием функционирования эукариотического генома по сравнению с прокариотическим является многоуровневый характер регуляции действия генов. У прокариот возможен только один тип регуляции — на уровне транскрипции с помощью оперонной системы. У эукариот, благодаря прерывистой структуре генов, к этому типу регуляции добавляется еще посттранскрипционная (сплайсинг, модификация) регуляция и регуляция на уровне трансляции (неоднозначность трансляции). Кроме того, присутствие в хромосомах гистонов позволяет осуществлять групповой контроль за действием генов с помощью механизма структурных преобразований ДНК — перевода участков хромосом из активного (эухроматического) в неактивное (гетерохроматическое) состояние. Такие преобразования иногда затрагивают целые хромосомы и даже весь геном целиком. В качестве примера хромосомного уровня регуляции можно привести образование в клетках женского пола млекопитающих и человека полового хроматина (тельца Барра). Это — крупная гранула хроматина, представляющая собой одну из двух Х-хромосом, максимально конденсированную, и, следовательно, неактивную. Примером инактивации всего генома служит процесс спермиогенеза у животных, во время которого конденсацией охвачены все хромосомы сперматозоида, что делает их неактивными. Это является защитным механизмом для половых клеток в случае повреждения их ДНК (например, при облучении). Возникающие в них мутации, если они не летальны, могут проявиться только при восстановлении функциональной активности мужского генома при дифференциации зародыша. Однако рецессивность большинства мутаций отодвигает их возможное проявление, по крайней мере, до следующего поколения (до перехода в гомозиготное состояние) или вообще исключает его.

Ген - структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения. Однако перенос генов от родителей к потомкам не является единственным способом передачи генов. В 1959 году был описан случай горизонтального переноса генов. В отличие от вертикального переноса, в горизонтальном организм передаёт гены организму, который не является его потомком. Этот способ передачи широко распространён среди одноклеточных организмов и в меньшей степени среди многоклеточных.

Гены эукариот

Отметим вначале, что у эукариотических организмов ДНК присутствует не только в ядрах, но и в органеллах - митохондриях, которые есть у всех эукариот, и хлоропластах, имеющихся у зеленых растений. По многим признакам предполагается, что орга-неллы происходят от прокариот: митохондрии от а-пурпурных бактерий, а хлоропласты - от цианобактерий. Их роднят с прокариотами многие черты белок-синтезирующего аппарата. Учитывая направленность интересов генетической инженерии, ограничимся здесь рассмотрением только ядерных генов.

Строение. Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Отсюда ясно, что интроны относятся к некодирующим последовательностям. Они могут располагаться не только в области, ограниченной инициирующим и терминирующим кодонами, но и вне их, в начале или в конце гена. Их длина может превышать 10 т.п.н. У низших эукариот прерывные гены составляют меньшинство всех генов (5 % у дрожжей), а у высших - большинство (94 % у млекопитающих). Отметим, что мозаичность генов найдена и в прокариотических клетках.

Эволюционно связанные гены, обладающие высокой степенью физической гомологии, образуют семейства. Белки, кодируемые такими генами, действуя одновременно или на разных этапах развития организма, выполняют одинаковые функции. Например, состав белков в а- и р-цепях гемоглобина крови млекопитающих различен у эмбриона, плода и взрослого организма, что вызвано дифференциальной экспрессией генов, входящих в а- и р-семей-ства глобиновых генов. Наряду с функционирующими генами, в семействах обнаружены нефункционирующие. Такие гены получили название псевдогенов. Они не экспрессируются по различным причинам (изменение рамки считывания из-за делеции или вставки, отсутствие интрона и т. п.).

Характерной чертой генов, входящих в семейство, является сходная картина локализации большинства интронов. Это сходство не ограничивается рамками определенного генома. Так, в случае глобиновых генов сходными по расположению интронов оказались гены у всех исследованных животных - у млекопитающих, птиц и лягушек. Однако длины и нуклеотидные последовательности интронов могут значительно варьировать, меняя тем самым и размеры самих генов.

Транскрипция. Гены эукариот не группируются в опероны, поэтому каждый из них имеет собственные промотор и терминатор транскрипции. Транскрипцию ведут три различные РНК-полимеразы: I, II и III, которые синтезируют рРНК, мРНК и тРНК, соответственно. Как и в случае прокариот, рассмотрим только механизм экспрессии генов, кодирующих белки. Поэтому далее под эукариотической РНК-полимеразой подразумевается РНК-полимераза II. Она состоит из более десятка субъединиц, но все же связываться непосредственно с промотором не может. Ее посадке на промотор способствуют транскрипционные факторы белковой природы. Ряд из них распознают специфические последовательности (боксы) в промоторе.

Длина типового промотора высших эукариот - около 100 п.н. В нем следует различать две части - базовую и дополнительную. Гены, имеющие только базовую часть промотора, функционируют в любых клетках организма и не подвержены ткане-специфичес-кому контролю. Эта часть служит для инициации транскрипции и точной ориентации РНК-полимеразы II относительно первого транскрибируемого нуклеотида. Дополнительная часть совместно с энхансерами используется для повышения эффективности транскрипции и регуляции активности гена.

Прокариоты (лат. Procaryota , от др.-греч. προ «перед» и κάρυον «ядро»), или доядерные - одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являютсяорганеллы эукариотических клеток - митохондрии и пластиды.

Прокариоты разделяют на два таксона в ранге домена (надцарства): Бактерии (Bacteria ) и Археи (Archaea ).

Для клеток прокариот характерно отсутствие ядерной оболочки, ДНК упакована без участия гистонов. Тип питания осмотрофный.

Генетический материал прокариот представлен одной молекулой ДНК, замкнутой в кольцо, имеется только один репликон. В клетках отсутствуют органоиды, имеющие мембранное строение. В геноме могут присутствовать мобильные генетические элементы, а у некоторых прокариот (например, вольбахия) их содержится необычно много. Изучение бактерий привело к открытиюгоризонтального переноса генов, который был описан в Японии в 1959 г. Это процесс широко распространен среди прокариот, а также у некоторых эукариот. Открытие горизонтального переноса генов у прокариот заставило по-другому взглянуть на эволюцию жизни. Ранее эволюционная теория базировалась на том, что виды не могут обмениваться наследственной информацией. Прокариоты могут обмениваться генами между собой непосредственно (конъюгация, трансформация) а также с помощью вирусов -бактериофагов (трансдукция).

Уникальные гены - это гены, которые встречаются в клетке два или несколько раз (до 10-20). Большинство исследователей считает, что у многоклеточных общее число генов в среднем равно сто тысяч и подавляющее их число - это уникальные гены. Характерная черта генов эукариотов - мозаичное экзон-интронное строение. Интроны, не несущие генетической информации, вырезаются (сплайсинг). Число и размер интронов у разных видов варьируется. Присутствие их в гене приводит к значительному увеличению размеров гена. Интроны стабилизируют экзоны, однако существует представление, что интрон - это так называемая «эгоистическая» ДНК, не дающая организму никаких эволюционных преимуществ. Экзоны контролируют синтез белков: 1 экзон - 1 домен .

К повторяющимся генам относятся прежде всего гены больших и малых рРНК и гистонов. Число их сильно варьирует и может достигать более 2000. Гены больших рРНК организованы в блоки, в которых последовательно идут гены 18S рРНК, 58S рРНК и 28S рРНК. Между ними имеются промежутки, различающиеся по длине у разных организмов. Межгенные участки имеют повторы разных типов, с необычной последовательностью, богатых парами ГЦ. Гены низкомолекулярных ядерных РНК блоков не образуют. Гены гистонов повторяются в геноме десятки (у млекопитающих), и сотни (у дрозофилы), и тысячи (у аксолотля) раз. Причем не удается уловить связи между этим показателем и положением организма на эволюционной лестнице.

Перестраивающиеся, или рекомбинирующие, гены - это гены, кодирующие легкие и тяжелые цепи белков иммуноглобулинов , выполняющих функции антител. Гены этих белков состоят из двух типов генов для легких и пяти типов - для тяжелых цепей. Легкие цепи кодируются тремя отдельными генетическими элементами, тяжелые - четырьмя. Перестройки генома приводят к соединению разных участков и в итоге - к образованию иммуноглобулинов разных классов.

Прыгающие гены, или транспозоны, - мобильные генетические элементы . Являясь нормальным компонентом генома, они составляют его значительную часть (у дрозофилы- 7% генома), могут быть представлены многими копиями, рассеянными по геному, и имеют варьирующую локализацию. Структура разных классов мигрирующих элементов (МЭ) варьирует, но для всех их характерно наличие на концах обращенных повторов. В середине МЭ могут иметь уникальные последовательности. МЭ проявляют высокую локусную специфичность, так как могут встраиваться в определенную последовательность на хромосоме.

Повторы на днк

Повторяющаяся ДНК - атрибут любой генетической системы. Еще на самых ранних этапах эволюции, когда возник почти полный репертуар полипептидов - носителей основных молекулярных функций (что-то вроде словаря генетического языка), им уже, по всей видимости была присуща внутренняя периодичность ( Ohno, 1981 , 1984 ; Go, 1983 ). Наличие олигомерных повторов в современных генах и белках объясняют тем, что вообще в любой информационной системе копирование текста - эффективное средство повышения помехоустойчивости при передаче сообщений . Применительно к генетическому языку существование внутригенных повторов резко снижает негативные эффекты таких ошибок, как сдвиги рамки трансляции, различные делеции и вставки ( Ohno, 1984 ). Действительно, белки, чьи гены содержат внутренние олигомерные повторы, также должны обладать периодичной первичной структурой. При этом длина полипептидного повтора будет зависеть от того, кратна ли трем длина соответствующего матричного повтора. Например, повторы из шести нуклеотидов будут порождать исключительно дипептидную периодичность, тогда как пентамерным повторам в гене должна отвечать периодичность той же размерности и в полипептидном продукте ( рис 1 ).

Но, пожалуй, самая интересная особенность таких повторов состоит в том, что они обеспечивают совпадение обеих периодичностей, нуклеотидной и аминокислотной, во всех трех возможных рамках трансляции ( Ohno, 1984 , 1987 ). Поэтому С.Оно и полагает, что еще в самом начале, на заре жизни, когда биохимическая машина трансляции работала с частыми сбоями и когда рамка считывания вряд ли была однозначно фиксирована, как раз такие повторы (длиной, не кратной трем) должны были иметь ощутимое селективное преимущество. В изрядном количестве олигонуклеотидные мотивы именно такой конфигурации присутствуют практически во всех проанализированных генах самых разных видов про- и эукариот. В принципе нельзя исключить, что по крайней мере некоторые из них сохранились с тех давних времен, т.е. являются своеобразными молекулярными реликтами.

Далее, спонтанно возникнув, даже сравнительно короткие повторенные участки существенно увеличивают вероятность дупликации (и автоматически - мультипликации) как их самих, так и тех сегментов генома, которые ими фланкированы ( Smith, 1976 ). Конкретные механизмы внутригеномного размножения повторов могут быть разными (неравный кроссинговер, скользящая гиперрепликация, обратная транскрипция и т.д.), но само размножение представляет собой типичный автокаталитический процесс ( Orgel, Crick, 1980 ; Doolitle et al., 1984 ; и др.). И хотя в целом ряде случаев количество повторов (например, МГЭ) регулируется по принципу обратной связи ( O"hare, Rubin, 1983 ; Simons, Kleckner, 1983 ; Snyder, Doolitle, 1988 ), хотя для любого вида организмов в норме имеются, по-видимому, и неспецифические селективные барьеры на пути "эгоистичного" распространения повторов по геному ( Бердников, Родин, Жарких, 1982 ; Rodin et al., 1985 ; Родин, 1985а,б ), для большинства современных организмов, в особенности эукариотических, характерна чрезвычайно высокая концентрация повторов практически на всех уровнях молекулярно-генетической организации.

Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РН……..