Что такое инерция? Значение слова "инерция". Инерция твердого тела

Слово Inertia в переводе с латыни означает бездеятельность, косность. В физике инерцией называют явление постоянства скорости (по модулю и направлению), если на тело не оказывают действие другие тела или их действие взаимно скомпенсировано. Явление инерции можно определить и иначе: инерция - это стремление тела сохранить без изменений сое состояние инерциальной системе отсчета. Инерцию считают неотъемлемым свойством материи.

Если на тело действует какая-либо сила, то тело изменяет скорость. Скорость своего движения тело не может изменить мгновенно, скорость изменяется постепенно.

Мерой инерции тела служит его масса.

Всякое тело, выведенное из состояния покоя, после прекращения на него воздействия будет двигаться по инерции. Но так думали не всегда. Еще четвертом веке Аристотель заявил о том, что все, что движется, движимо чем- то, естественное положение тела относительно Земли - это покой. Это мнение господствовало научных и около научных представлениях, почти две тысячи лет. Г. Галилей одним из первых пришел к объяснению причин равномерного и ускоренного перемещения тел и исследовал движение по инерции. Однако, представления Галилея были не верны, так как он утверждал, что тело на которое не действуют силы движется равномерно по окружности. Такие представления у ученого были сформированы после изучения движения небесных тел. Так как он считал, что небесные тела движутся сами по себе.

Закон инерции

Было бы правильно, говорить, что первым сформулировал закон инерции французский философ, математик Р. Декарт. Он писал о том, что любое тело пребывает одном состоянии до того момента пока не встретится с другим телом. И в другом своем законе Декарт говорит, что любая частица стремится двигаться исключительно по прямой. Однако, Декарт дал формулировки своих законов не зная о силах гравитации и скорее по наитию, чем опираясь на факты, поэтому считают, что закон инерции, который мы знаем, сформулировал И. Ньютон:

Каждое тело находится в состоянии покоя или движется равномерно и прямолинейно, относительно любой инерциальной системы отсчета, до того момента пока действие на него других тел не заставит его изменить свое состояние.

Закон инерции является важным и независимым законом. Он отображает возможность определить пригодность системы отсчета для рассмотрения движения в динамическом и кинематическом смыслах. Он стал первым шагом при установлении основных законов классической механики.

Движение по инерции является обязательно равномерным и прямолинейным. Такое движение можно считать аналогичным покою, так как всегда можно выбрать такую инерциальную систему отсчета, которая бы перемещалась со скоростью рассматриваемого тела и в ней тело будет покоиться.

Примеры решения задач

ПРИМЕР 1

Задание Груз, имеющий большую массу, подвешен на нити (рис.1), к его другому концу прикреплена еще одна нить. Как следует потянуть за нижнюю нить, для того чтобы а) оборвалась нижняя нить; б) оборвалась верхняя нить?
Решение а) Для того чтобы оборвать нижнюю нить следует резко дернуть за нее. Благодаря тому, что существует инерция, тяжелый груз не сможет быстро увеличить свою скорость и в результате порвется нижняя нить.

б) Для того чтобы оборвать верхнюю нить следует тянуть за нижнюю нить медленно увеличивая усилия. В результате, к силе тяжести груза добавится сила, которую мы будем прикладывать. Инерция, в данном случае, не поможет сохраниться верхней нити, так как скорость груза изменяется медленно.

ПРИМЕР 2

Задание Приведите пример использования явления инерции. Почему следует учитывать явление инерции, приведите пример.
Решение Явление инерции используют для продолжения движения. Так, водитель автомобиля некоторую часть пути может проехать, выключив двигатель и тем самым уменьшить расход топлива.

Инерцию движения воздуха используют в ветряных двигателях. Работу центробежного насоса можно считать примером применения явления инерции.

Явление инерции следует учесть и при начале движения и при окончании его. Ни какой автомобиль не может мгновенно развить полную скорость, причем, чем больше масса машины, тем большее время требуется для набора скорости. Даже самые современные тормоза не способны заставить автомобиль мгновенно остановиться. Человек может запнуться и упасть благодаря инерции о неровность на пути. Инерция дает возможность выколотить пыль из мягких вещей.

Из повседневного опыта мы можем подтвердить следующее умозаключение: скорость и направление движения тела могут меняться лишь во время его взаимодействия с другим телом. Это порождает явление инерции, о котором мы и поговорим в этой статье.

Что такое инерция? Пример жизненных наблюдений

Рассмотрим случаи, когда какое-нибудь тело на начальном этапе эксперимента уже пребывает в движении. Позже мы увидим, что уменьшение скорости и остановка тела не могут происходить самовольно, ведь причиной тому является действие на него другого тела.

Вы, наверное, не единожды наблюдали, как пассажиры, которые едут в транспорте, вдруг наклоняются вперед во время торможения или прижимаются на бок на крутом повороте. Почему? Объясним далее. Когда, к примеру, спортсмены пробегают определенную дистанцию, они пытаются развить максимальную скорость. Пробежав финишную черту, уже можно и не бежать, однако нельзя резко остановиться, а поэтому спортсмен пробегает еще несколько метров, то есть совершает движение по инерции.

Из вышеперечисленных примеров можно сделать вывод, что все тела имеют особенность сохранять скорость и направление движения, не будучи в состоянии при этом мгновенно их изменить впоследствии действия иного тела. Можно предположить, что при отсутствии внешнего действия тело сохранит и скорость, и направление движения как угодно долго. Итак, что такое инерция? Это явление сохранения скорости движения тела при отсутствии воздействия на него других тел.

Открытие инерции

Такое свойство тел открыл итальянский ученый Галилео Галилей. На основе своих экспериментов и рассуждений он утверждал: ежели тело не взаимодействует с иными телами, то оно либо пребывает в состоянии спокойствия, либо движется прямолинейно и равномерно. Его открытия вошли в науку как Закон инерции, однако более детально сформулировал его Рене Декарт, а уж Исаак Ньютон внедрил в свою систему законов.

Интересный факт: инерция, определение которой привел нам Галилей, рассматривалась еще в Древней Греции Аристотелем, но из-за недостаточного развития науки, точной формулировки приведено не было. гласит: существуют такие
системы отсчета, относительно которых тело, которое движется поступательно, сохраняет свою скорость постоянной, если на него не действуют иные тела. Формула инерции в едином и обобщенном виде отсутствует, но ниже мы приведем множество иных формул, раскрывающих ее особенности.

Инертность тел

Все мы знаем, что автомобиля, поезда, корабля или других тел увеличивается постепенно, когда они начинают двигаться. Все вы видели запуск ракет по телевизору или взлет самолетов в аэропорту - они увеличивают скорость не рывками, а постепенно. Наблюдения, а также повседневная практика говорят о том, что все тела имеют общую особенность: скорость движения тел в процессе их взаимодействия меняется постепенно, а поэтому для их изменения необходимо некоторое время. Эта особенность тел получила название инертности.

Все тела инертны, но не у всех инертность одинакова. Из двух взаимодействующих тел она будет выше у того, которое обретет меньшее ускорение. Так, к примеру, при выстреле ружье приобретает меньшее ускорение, чем патрон. При взаимном отталкивании взрослого конькобежца и ребенка взрослый получает меньшее ускорение, чем ребенок. Это свидетельствует о том, что инертность взрослого человека больше.

Для характеристики инертности тел ввели особенную величину - массу тела, ее принято обозначать буквой m . Дабы иметь возможность сравнивать массы различных тел, массу кого-нибудь из них необходимо учесть за единицу. Ее выбор может быть произвольным, однако она должна быть удобной для практического употребления. В системе СИ за единицу взяли массу специального эталона, изготовленного из твердого сплава платины и иридия. Она носит всем нам известное название - килограмм. Следует отметить, что инерция твердого тела бывает 2-х видов: поступательная и вращательная. В первом случае мерой инерции является масса, во втором - момент инерции, о котором мы поговорим позже.

Момент инерции

Так называют скалярную физическую величину. В системе СИ единицей измерения момента инерции является кг*м 2 . Обобщенная формула следующая:

Здесь m i - это масса точек тела, r i - это расстояние от точек тела до оси z в пространственной системе координат. В словесной интерпретации можно сказать так: момент инерции определяется суммой произведений элементарных масс, умноженных на квадрат расстояния до базового множества.

Есть и другая формула, характеризующая определение момента инерции:

Здесь dm - масса элемента, r - расстояние от элемента dm до оси z . Словесно можно сформулировать так: момент инерции системы материальных точек или тела относительно полюса (точки) - это алгебраическая сумма произведения масс материальных точек, составляющих тело, на квадрат расстояния их до полюса 0.

Стоит упомянуть, что существует 2 вида моментов инерции - осевые и центробежные. Есть также такое понятие, как главные моменты инерции (ГМИ) (относительно главных осей). Как правило, они всегда различны между собой. Ныне можно рассчитать моменты инерции для многих тел (цилиндра, диска, шара, конуса, сферы и проч.), однако не будем углубляться в уточнение всех формул.

Системы отсчета

В 1-ом законе Ньютона шла речь о равномерном прямолинейном движении, которое можно рассматривать только в определенной системе отсчета. Даже приближенный анализ механических явлений показывает, что закон инерции выполняется далеко не во всех системах отсчета.

Рассмотрим простой эксперимент: положим мяч на горизонтальный столик в вагоне и понаблюдаем за его движением. Если поезд будет находиться в состоянии спокойствия относительно Земли, то и мяч сохранит спокойствие до тех пор, пока мы не подействуем на него иным телом (например, рукой). Следовательно, в системе отсчета, что связана с Землей, закон инерции выполняется.

Представим, что поезд будет ехать относительно Земли равномерно и прямолинейно. Тогда в системе отсчета, что связана с поездом, мяч сохранит состояние спокойствия, а в той, что связана с Землей, - состояние равномерного и прямолинейного движения. Следовательно, закон инерции выполняется не только в системе отсчета, связанной с Землей, но и во всех других, движущихся относительно Земли равномерно и прямолинейно.

Теперь представим, что поезд быстро набирает скорость либо круто поворачивает (во всех случаях он движется с ускорением относительно Земли). Тогда, как и раньше, мяч сохраняет равномерное и которое он имел до начала ускорения поезда. Однако относительно поезда мяч сам по себе выходит из состояния спокойствия, хотя и нет тел, которые бы выводили его из него. Это значит, что в системе отсчета, связанной с ускорением движения поезда относительно Земли, закон инерции нарушается.

Итак, системы отсчета, в которых выполняется закон инерции, получили название инерциальных. А те, в которых не выполняется, - неинерциальных. Определить их просто: если тело движется равномерно и прямолинейно (в отдельных случаях - это спокойствие), то система инерциальная; если движение неравномерное - неинерциальная.

Сила инерции

Это довольно многозначное понятие, а поэтому попытаемся как можно более детально его рассмотреть. Приведем пример. Вы спокойно стоите в автобусе. Внезапно он начинает двигаться, а значит, набирает ускорение. Вы мимо воли отклонитесь назад. Но почему? Кто вас потянул? С точки зрения наблюдателя на Земле вы остаетесь на месте, при этом выполняется 1-ый закон Ньютона. С точки зрения наблюдателя в самом автобусе, вы начинаете двигаться назад, будто под какой-либо силой. На самом деле ваши ноги, которые связаны силами трения с полом автобуса, поехали вперед вместе с ним, а вам,
теряя равновесие, пришлось падать назад. Таким образом, для описания движения тела в неинерциальной системе отсчета необходимо вводить и учитывать дополнительные силы, что действуют со стороны связей тела с такой системой. Эти силы и есть силы инерции.

Необходимо учесть, что они фиктивны, ибо нет ни единого тела либо поля, под действием которого вы начали двигаться в автобусе. Законы Ньютона на силы инерции не распространяются, однако их использование наряду с "настоящими" силами позволяет описывать движение у произвольных неинерциальных систем отсчета при помощи различных инструментов. В этом состоит весь смысл ввода сил инерции.

Итак, теперь вы знаете, что такое инерция, момент инерции и инерциальные системы, силы инерции. Двигаемся далее.

Поступательное движение систем

Пусть на некое тело, находящееся в неинерциальной системе отсчета, движущееся с ускорением а 0 относительно инерциальной, действует сила F. Для такой неинерциальной системы уравнение-аналог второго закона Ньютона имеет вид:

Где а 0 - это ускорение тела с массой m , что вызвано действием силы F относительно неинерциальной системы отсчета; F ін - сила инерции. Сила F в правой части является «настоящей» в том понимании, что это результирующая взаимодействия тел, зависящая только от разности координат и скоростей взаимодействующих материальных точек, которые не меняются при переходе от одной системы отсчета к другой, движущейся поступательно. Поэтому не меняется и сила F. Она инвариантна относительно такого перехода. А вот F ін возникает не по причине а из-за ускоренного движения системы отсчета, из-за чего она меняется при переходе к другой ускоренной системе, поэтому не является инвариантной.

Центробежная сила инерции

Рассмотрим поведение тел в неинерциальной системе отсчета. XOY вращается относительно инерциальной системы, коей будем считать Землю, с постоянной угловой скоростью ω. Примером может послужить система на рисунке ниже.

Выше изображен диск, где закреплен радиально направленный стержень, а также надет синий шарик, "привязанный" к оси диска эластичной веревкой. Пока диск не вращается, веревка не деформируется. Однако при раскручивании диска шарик понемногу растягивает веревку до тех пор, пока сила упругости F ср не станет такой, что равна произведению массы шарика m на ее нормальное ускорение a п = -ω 2 R, то есть F ср = -mω 2 R , где R - это радиус круга, который описывает шарик при вращении вокруг системы.

Ежели угловая скорость ω диска останется постоянной, то и шарик прекратит движение относительно оси OX. В этом случае относительно системы отсчета XOY, которая связана с диском, шарик будет находиться в состоянии спокойствия. Это объяснится тем, что в этой системе, помимо силы F ср, на шарик действует сила инерции F cf , которая направлена вдоль радиуса от оси вращения диска. Сила, имеющая вид, как в формуле, представленной ниже, называется инерции. Возникать она может только во вращающихся системах отсчета.

Сила Кориолиса

Оказывается, когда тела двигаются относительно вращающихся систем отсчета, на них, помимо центробежной силы инерции, действует еще одна сила - Кориолиса. Она всегда перпендикулярна к вектору скорости тела V, а это означает, что она не выполняет никакой работы над этим телом. Подчеркнем, что сила Кориолиса проявляет себя лишь тогда, когда тело движется относительно неинерциальной системы отсчета, которая осуществляет вращение. Ее формула выглядит следующим образом:

Поскольку выражение (v*ω) является векторным произведением приведенных в скобках векторов, то можно прийти к выводу, что направление силы Кориолиса определяется правилом буравчика по отношению к ним. Ее модуль равен:

Здесь Ө - это угол между векторами v и ω .

В заключение

Инерция - это удивительное явление, которое ежедневно преследует каждого человека сотни раз, пусть мы и сами не замечаем этого. Думаем, что статья дала вам важные ответы на вопросы о том, что такое инерция, что такое сила и моменты инерции, кто открыл явление инерции. Уверены, вам было интересно.

Явление, которому посвящена наша сегодняшняя беседа, встречается в разных жизненных ситуациях. Мы с удовольствием его используем, учитываем и частенько ругаем.

Речь пойдет об инерции. Постараемся разобраться, что скрывается за этим названием.

Что же такое инерция

Наблюдая полёт копья, брошенного рукой атлета, падение всадника через голову споткнувшейся лошади; созерцая камни, веками неподвижно лежащими на одних и тех же местах - греческие мыслители задумывались, что общего в этих явлениях?

Данная им формулировка явления инерции известна как I закон Ньютона.

«Инер­ция - это фи­зи­че­ское яв­ле­ние со­хра­не­ния ско­ро­сти тела по­сто­ян­ной, если на него не дей­ству­ют дру­гие тела или их дей­ствие ском­пен­си­ро­ва­но».

Это означает, что, благодаря инерции, тела, находящиеся в покое, продолжают покоиться, а движущиеся продолжают свое движение, пока на них не окажут воздействие внешние силы.

Например, автомобиль может находиться в покое в двух случаях, если на горизонтальном участке дороги его двигатель выключен, либо его двигатель включен, но силы сопротивления уравновесили силу тяги двигателя, т. е. скомпенсировали её.

Теперь вернемся к нашему всаднику, перелетающему через голову споткнувшейся лошади. Лошадь, споткнувшись, резко теряет скорость, а невезучий всадник… по инерции продолжает движение.

По этой же причине при ДТП водитель, пренебрегающий ремнями безопасности, получает удар о лобовое стекло.

Почему, поскользнувшись при ходьбе, мы падаем назад? Тело по инерции сохраняет прежнюю скорость, а ноги на скользком участке быстренько «убегают» вперед.

Формула силы инерции

Количественной характеристикой явления инерции является сила инерции.

Для расчета этой силы используют формулу:

  • F ин - сила инерции;
  • m - масса тела;
  • a - ускорение.

Знак минус указывает на то, что сила инерции противодействует силе, вызвавшей изменение скорости тела.

Понятие инертности в физике

Итак, инерция - это физическое явление. С ним тесно связано еще одно понятие - инертность. Под инертностью в физике понимают свойства тел противодействовать мгновенному изменению направления или скорости движения.

Любое тело не может мгновенно изменить свою скорость, однако, одни тела это делают быстрее, другие - медленнее. Для остановки гружёного и порожнего самосвалов, движущихся с одинаковой скоростью, требуется разное время.

Это происходит потому, что тело с большей массой более инертно, и ему на изменение скорости требуется больше времени. То есть мерой инертности в физике является масса тела.

Инертные люди, инертные газы

Термин «инертный» широко используется в химии. Он относится к химическим элементам, которые при обычных условиях не вступают в химические реакции. Например, благородные газы аргон, ксенон и др.

Этот термин может быть применен и к поведению человека. Инертные люди отличаются равнодушием к окружающему миру. Они противятся любым переменам, как в их собственной судьбе, так и в работе. Они ленивы и безынициативны.

Инертность вращающихся объектов

Все приведенные ранее примеры относились к поступательно движущимся телам. А как же быть с вращающимися объектами? Скажем, с вентилятором, с маховиком в двигателе внутреннего сгорания или детской игрушке. Ведь после выключения электрического вентилятора его лопасти ещё некоторое время по инерции продолжают крутиться.

Насколько тела инертны во время вращения определяет момент инерции. Он зависит от массы тела, его геометрических размеров и расстояния до оси вращения. Изменение этого расстояния влияет на скорость вращения тела. Это используют спортсмены - фигуристы, поражая зрителей продолжительным вращением с изменением скорости.

Специальные расчёты позволяют определить оптимальные размеры механизма и допустимую скорость вращения, чтобы не допустить разрыва вращающихся частей.

Т.е. момент инерции во вращательном движении играет ту же роль, что и масса при поступательном движении. Но в отличие от массы момент инерции можно изменять, как это делают фигуристы - то широко разводя руки, то прижимают их к груди.

Инерция вокруг нас

Именно это явление используют:

  • для сбрасывания ртутного столбика в медицинском термометре и выбивания пыли из ковров;
  • для продолжения движения после разбега на коньках, лыжах, велосипеде;
  • для экономии горючего при езде на автомобиле;
  • в принципе работы артиллерийских детонаторов и т. д.

Это лишь небольшая часть из всех применений инерции. Но не следует забывать о возможной опасности, которую таит это явление природы. Надпись на заднем борту грузовика «Водитель, сохраняй дистанцию», напоминает, что транспорт мгновенно остановить нельзя.

И при торможении впереди едущего автомобиля, следующая за ним машина, остановиться мгновенно не может. По этой же причине категорически запрещено перебегать дорогу перед движущимся транспортом.

Теперь вы легко ответите на вопрос, почему при торможении автомобилей обязательно включается задний красный свет, почему при повороте водитель обязательно сбрасывает скорость.

В спортзале и на катке, в цирке и в мастерской - инерция сопровождает нас всюду. Присмотритесь.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Тела не могут самостоятельно приходить в движение или изменять его направление, для этого необходимо воздействие внешней силы. Такое противодействие изменениям называется инерцией, которая просто означает, что тела, находящиеся в покое, остаются в покое, а движущиеся - в движении, пока на них не окажут воздействие внешние силы.

Например, после выключения электрического вентилятора колесо с лопастями продолжает какое-то время быстро вращаться и лишь потом замедляет свой ход и останавливается. Если бы не было трения в подшипниках и аэродинамического сопротивления, колесо вращалось бы неограниченное время и после выключения вентилятора. Однако после того как колесо остановится, оно уже не сможет снова начать самостоятельно вращаться. Для того чтобы вентилятор начал работать, необходима внешняя сила,

в данном случае электродвигатель. Стремление всех тел сохранять состояние движения или покоя объясняет, почему пассажиры, стоящие в проходе поезда, начинают падать назад или вперед в те моменты, когда поезд трогается или останавливается (рисунки сверху и снизу).

С тех пор как греческий философ Аристотель более 2000 лет назад ввел понятие инерции, многие великие мыслители ломали себе голову над ее смыслом. В 1635 году итальянский физик Галилео Галилей выполнил серию экспериментов с шарами, скатывающимися по наклонной плоскости, что позволило ученому впервые сформулировать понятие инерции в современном ее понимании. Основываясь на работах Галилея, Исаак Ньютон обобщил свои наблюдения в области инерции в первый из трех законов механики, носящих его имя.

Покоящиеся тела

Как показано на рисунке над текстом, пассажиры были застигнуты врасплох, когда поезд начал движение, и они начинают падать назад. Диаграмма справа показывает, что силу, препятствующую падению пассажиров, передает ручной ремень, в то время как сила тяжести держит их на месте. Пассажиры реагируют на ускорение так, как будто невидимая сила тянет их назад.

Движущиеся тела

Когда движущийся поезд замедляет свой ход, его тормоза создают силу, направленную противоположно направлению движения {голубая стрелка). Так как на пассажиров, стоящих внутри поезда, тормозящая сила не действует, они продолжают движение и начинают падать вперед. Сила, передаваемая через ручной ремень, и сила тяжести останавливают падение пассажиров. Резкое торможение поезда создает у пассажиров ощущение, что какая-то сила толкает их вперед.

Эксперимент Галилея

Наблюдая за шарами, перекатывающимися по наклонным плоскостям, Галилей правильно сформулировал понятие инерции. При отсутствии трения, замедляющего движение тел, шарик, скатывающийся по наклонной плоскости, продолжал бы качение вверх по другой наклонной плоскости {верхний рисунок) до тех пор, пока его кинетическая энергия (энергия движения) не была бы полностью израсходована на преодоление силы тяжести. В среднем примере шарик перемещается вдоль второй наклонной плоскости дальше, чем в верхнем, так как вторая наклонная плоскость не столь крута. Галилей сделал вывод, что если бы угол наклона второй наклонной плоскости стал бы еще меньше, шарик прокатился бы еще дальше, прежде чем уступить силе тяжести. А если бы вторая плоскость была бы горизонтальной, как в нижнем примере, сила тяжести не влияла бы на движение и шарик катился бы вечно.

Слово «инерция» ассоциируется у нас с физикой, однако мы часто употребляем его в повседневной жизни безотносительно к данной науке. Давайте же разберемся, что такое инерция.

Значение слова

Данное слово пришло к нам из латинского языка: inertia. Инерция означает «бездействие».

Инерция - это свойство тела сохранять первоначальное состояние покоя или же равномерного движения, когда на него не действуют никакие силы (телега катилась по инерции).

Слово также употребляется и в переносном смысле: инерция обозначает отсутствие инициативы, бездеятельность. В связи с этим в народе распространено выражение «делать что-то по инерции» или «жить по инерции», что означает выполнять какие-то действия по привычке, не прилагая особых усилий. Синонимичным является выражение «плыть по течению».

Также существует прилагательное «инертный». Его, как вы уже догадались, можно заменить словом «бездеятельный».

Инерция в законе Ньютона

Известнейший физик Исаак Ньютон провозгласил о существовании инерциальных систем отсчета, то есть таких, относительно которых движущиеся тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других тел компенсируется. Это так называемый первый закон Ньютона. Его еще называют законом инерции, поскольку это явление сохранения скорости прямолинейного равномерного движения (или покоя) тела и называют инерцией.

Есть также и другие системы отсчета, но все они, какими бы ни были - движущимися с ускорением или вращающимися, - будут называться неинерциальными.

Нельзя сказать, что Ньютон был первооткрывателем в данном вопросе, поскольку он опирался на труды Г. Галилея, который первым высказал утверждение, что, если на тело не действует другая сила, это вовсе не значит, что оно покоится. Наоборот, именно состояние равномерного и прямолинейного движения является как бы естественным для тела, а покой — это скорее частный случай такого движения, скорость которого равна нулю. Само это равномерное и прямолинейное движение свободного тела и называется движением по инерции.

Сила инерции

В физике также существует такое понятие, как сила инерции. Данный термин широко применим в механике. Это понятие применяется к Даламберовой, Эйлеровой, Ньютоновой силам.